Edexcel Maths FP2
Mark Scheme Pack
$$
2009-2013
$$

Mark Scheme (Results) Summer 2009

GCE

GCE Mathematics (6668/ 01)

J une 2009

6668 Further Pure Mathematics FP2 (new)

Mark Scheme

Question Number	Scheme		Marks
Q1 (a)	$\frac{1}{r(r+2)}=\frac{1}{2 r}-\frac{1}{2(r+2)}$	$\frac{1}{2 r}-\frac{1}{2(r+2)}$	B1 aef
	$\sum_{r=1}^{n} \frac{4}{r(r+2)}=\sum_{r=1}^{n}\left(\frac{2}{r}-\frac{2}{r+2}\right)$		
	$\begin{aligned} & =\left(\frac{2}{\underline{1}}-\frac{2}{3}\right)+\left(\frac{2}{\underline{\underline{2}}}-\frac{2}{4}\right)+\ldots \ldots \\ & \quad \ldots \ldots \ldots \ldots+\left(\frac{2}{n-1}-\frac{2}{n+1}\right)+\left(\frac{2}{n}-\frac{2}{\underline{n+2}}\right) \end{aligned}$	List the first two terms and the last two terms	M1
	$=\frac{2}{1}+\frac{2}{2} ;-\frac{2}{n+1}-\frac{2}{n+2}$	Includes the first two underlined terms and includes the final two underlined terms. $\frac{2}{1}+\frac{2}{2}-\frac{2}{n+1}-\frac{2}{n+2}$	M1 A1
	$=3-\frac{2}{n+1}-\frac{2}{n+2}$		
	$\begin{aligned} & =\frac{3(n+1)(n+2)-2(n+2)-2(n+1)}{(n+1)(n+2)} \\ & =\frac{3 n^{2}+9 n+6-2 n-4-2 n-2}{(n+1)(n+2)} \end{aligned}$	Attempt to combine to an at least 3 term fraction to a single fraction and an attempt to take out the brackets from their numerator.	M1
	$\begin{aligned} & =\frac{3 n^{2}+5 n}{(n+1)(n+2)} \\ & =\frac{n(3 n+5)}{(n+1)(n+2)} \end{aligned}$	Correct Result	A1 cso AG
			(5)
			[6]

Question Number	Scheme	Marks
Q2 (a)	$z^{3}=4 \sqrt{2}-4 \sqrt{2} i,-\pi<\theta \not, \pi$ $\begin{aligned} & r=\sqrt{(4 \sqrt{2})^{2}+(-4 \sqrt{2})^{2}}=\sqrt{32+32}=\sqrt{64}=8 \\ & \theta=-\tan ^{-1}\left(\frac{4 \sqrt{2}}{4 \sqrt{2}}\right)=-\frac{\pi}{4} \\ & z^{3}=8\left(\cos \left(-\frac{\pi}{4}\right)+i \sin \left(-\frac{\pi}{4}\right)\right) \end{aligned}$ So, $z=(8)^{\frac{1}{3}}\left(\cos \left(\frac{-\frac{\pi}{4}}{3}\right)+\operatorname{i} \sin \left(\frac{-\frac{\pi}{4}}{3}\right)\right)$ $\Rightarrow z=2\left(\cos \left(-\frac{\pi}{12}\right)+\mathrm{i} \sin \left(-\frac{\pi}{12}\right)\right)$ Also, $z^{3}=8\left(\cos \left(\frac{7 \pi}{4}\right)+i \sin \left(\frac{7 \pi}{4}\right)\right)$ or $\quad z^{3}=8\left(\cos \left(-\frac{9 \pi}{4}\right)+\mathrm{i} \sin \left(-\frac{9 \pi}{4}\right)\right)$ $\Rightarrow \quad z=2\left(\cos \frac{7 \pi}{12}+i \sin \frac{7 \pi}{12}\right)$ and $z=2\left(\cos \left(\frac{-3 \pi}{4}\right)+\mathrm{i} \sin \left(\frac{-3 \pi}{4}\right)\right)$ A valid attempt to find the modulus and argument of $4 \sqrt{2}-4 \sqrt{2} i$. Taking the cube root of the modulus and dividing the argument by 3. $2\left(\cos \left(-\frac{\pi}{12}\right)+\mathrm{i} \sin \left(-\frac{\pi}{12}\right)\right)$ Adding or subtracting 2π to the argument for z^{3} in order to find other roots. Any one of the final two roots Both of the final two roots. Special Case 1: Award SC: M1M1A1M1A0A0 for ALL three of $2\left(\cos \frac{\pi}{12}+i \sin \frac{\pi}{12}\right)$, $2\left(\cos \frac{3 \pi}{4}+\mathrm{i} \sin \frac{3 \pi}{4}\right) \text { and } 2\left(\cos \left(\frac{-7 \pi}{12}\right)+\mathrm{i} \sin \left(\frac{-7 \pi}{12}\right)\right)$ Special Case 2: If r is incorrect (and not equal to 8) and candidate states the brackets) correctly then give the first accuracy mark ONLY where this is applicable.	M1 M1 A1 M1 A1 A1 [6]

working. Such candidates will not get full marks

Question Number	Scheme		Marks
(a)	$\frac{\mathrm{d}^{2} x}{\mathrm{~d} t^{2}}+5 \frac{\mathrm{~d} x}{\mathrm{~d} t}+6 x=2 \mathrm{e}^{-t}, \quad x=0, \frac{\mathrm{~d} x}{\mathrm{~d} t}=2 \text { at } t=0 .$ $\mathrm{AE}, m^{2}+5 m+6=0 \Rightarrow(m+3)(m+2)=0$ $\Rightarrow m=-3,-2$ So, $x_{\mathrm{CF}}=A \mathrm{e}^{-3 t}+B \mathrm{e}^{-2 t}$ $\left\{x=k \mathrm{e}^{-t} \Rightarrow \frac{\mathrm{~d} x}{\mathrm{~d} t}=-k \mathrm{e}^{-t} \Rightarrow \frac{\mathrm{~d}^{2} x}{\mathrm{~d} t^{2}}=k \mathrm{e}^{-t}\right\}$	$\begin{aligned} A e^{m_{1} t}+B \mathrm{e}^{m_{2} t}, & \text { where } m_{1} \end{aligned} \neq m_{2} . ~=A \mathrm{e}^{-3 t}+B \mathrm{e}^{-2 t} .$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$
	$\begin{aligned} & \Rightarrow k \mathrm{e}^{-t}+5\left(-k \mathrm{e}^{-t}\right)+6 k \mathrm{e}^{-t}=2 \mathrm{e}^{-t} \Rightarrow 2 k \mathrm{e}^{-t}=2 \mathrm{e}^{-t} \\ & \Rightarrow k=1 \\ & \left\{\text { So, } x_{\mathrm{PI}}=\mathrm{e}^{-t}\right\} \end{aligned}$	Substitutes $k \mathrm{e}^{-t}$ into the differential equation given in the question. Finds $k=1$.	M1 A1
	So, $x=A \mathrm{e}^{-3 t}+B \mathrm{e}^{-2 t}+\mathrm{e}^{-t}$	their $x_{\text {CF }}+$ their $x_{\text {PI }}$	M1*
	$\frac{\mathrm{d} x}{\mathrm{~d} t}==-3 A \mathrm{e}^{-3 t}-2 B \mathrm{e}^{-2 t}-\mathrm{e}^{-t}$ $\begin{aligned} & t=0, x=0 \Rightarrow \quad 0=A+B+1 \\ & t=0, \frac{\mathrm{~d} x}{\mathrm{~d} t}=2 \Rightarrow 2=-3 A-2 B-1 \end{aligned}$	Finds $\frac{\mathrm{d} x}{\mathrm{~d} t}$ by differentiating their x_{CF} and their x_{PI} Applies $t=0, x=0$ to x and $t=0, \frac{\mathrm{~d} x}{\mathrm{~d} t}=2$ to $\frac{\mathrm{d} x}{\mathrm{~d} t}$ to form simultaneous equations.	dM1* ddM1*
	$\begin{aligned} & \left\{\begin{array}{c} 2 A+2 B=-2 \\ -3 A-2 B=3 \end{array}\right\} \\ & \Rightarrow A=-1, B=0 \end{aligned}$		
	So, $x=-\mathrm{e}^{-3 t}+\mathrm{e}^{-t}$	$x=-\mathrm{e}^{-3 t}+\mathrm{e}^{-t}$	Al cao (8)

Mark Scheme (Results) Summer 2010

GCE

Further Pure Mathematics FP2 (6668)

Edexcel is one of the leading examining and awarding bodies in the UK and throughout the world. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers.
Through a network of UK and overseas offices, Edexcel's centres receive the support they need to help them deliver their education and training programmes to learners. For further information, please call our GCE line on 08445760025 , our GCSE team on 0844576 0027, or visit our website at www.edexcel.com.

If you have any subject specific questions about the content of this Mark Scheme that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

Ask The Expert can be accessed online at the following link:
http:// www.edexcel.com/ Aboutus/ contact-us/

Summer 2010
Publications Code UA023928
All the material in this publication is copyright
© Edexcel Ltd 2010

80

J une 2010
 Further Pure Mathematics FP2 6668 Mark Scheme

Question Number	Scheme	Marks
1(a)	$\frac{1}{3 r-1}-\frac{1}{3 r+2}$	M1 A1 (2)
(b)	$\begin{aligned} & \sum_{r=1}^{n} \frac{3}{(3 r-1)(3 r+2)}=\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+\ldots \frac{1}{3 n-1}-\frac{1}{3 n+2} \\ & =\frac{1}{2}-\frac{1}{3 n+2}=\frac{3 n}{2(3 n+2)} * \end{aligned}$	M1 A1ft A1 (3)
(c)	$\begin{aligned} & \text { Sum }=\mathrm{f}(1000)-\mathrm{f}(99) \\ & \quad \frac{3000}{6004}-\frac{297}{598}=0.00301 \quad \text { or } 3.01 \times 10^{-3} \end{aligned}$	M1 A1 (2)

PhysicsAndMathsTutor.com

Question Number	Scheme	Marks
3(a)	Finds critical values -2 and -5 or alternative method including calculator $(x+4)(x+3)^{2}-2(x+3)=0,(x+3)\left(x^{2}+7 x+10\right)=0$ so $(x+2)(x+3)(x+5)=0$ Establishes $x>-2$ Finds and uses critical value -3 to give $-5<x<-3$	M1
	$x>-2$	A1 A1
		M1A1

Question Number	Scheme	Marks
4(a)	$\text { Modulus = } 16$ $\text { Argument }=\arctan (-\sqrt{3})=\frac{2 \pi}{3}$	B1 M1A1 (3)
(b)	$z^{3}=16^{3}\left(\cos \left(\frac{2 \pi}{3}\right)+\mathrm{i} \sin \left(\frac{2 \pi}{3}\right)\right)^{3}=16^{3}(\cos 2 \pi+\mathrm{i} \sin 2 \pi)=4096 \text { or } 16^{3}$	M1 A1 (2)
(c)	$\begin{aligned} & \quad w=16^{\frac{1}{4}}\left(\cos \left(\frac{2 \pi}{3}\right)+\mathrm{i} \sin \left(\frac{2 \pi}{3}\right)\right)^{\frac{1}{4}}=2\left(\cos \left(\frac{\pi}{6}\right)+\mathrm{i} \sin \left(\frac{\pi}{6}\right)\right)(=\sqrt{3}+\mathrm{i}) \\ & \text { OR }-1+\sqrt{3} \mathrm{i} \text { OR }-\sqrt{3}-\mathrm{i} \text { OR } 1-\sqrt{3} \mathrm{i} \end{aligned}$	M1 A1ft M1A2(1,0)

Question Number	Scheme	Marks
6(a)		B1 B1 (2)
(b)	These are points where line $x=3$ meets the circle centre $(3,4)$ with radius 5 . The complex numbers are $3+9 i$ and 3 - i.	M1 A1 A1
(c)	$\begin{aligned} & \|z-6\|=\|z\| \Rightarrow\left\|\frac{30}{w}-6\right\|=\left\|\frac{30}{w}\right\| \\ & \therefore\|30-6 w\|=\|30\| \Rightarrow \therefore\|5-w\|=\|5\| \end{aligned}$ This is a circle with Cartesian equation $(u-5)^{2}+v^{2}=25$	M1 M1 A1 M1 A1 (5) 10

Question Number	Scheme	Marks
7(a)	$\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\mathrm{d} y}{\mathrm{~d} z} \cdot \frac{\mathrm{~d} z}{\mathrm{~d} x} \text { and } \frac{\mathrm{d} y}{\mathrm{~d} z}=2 z \text { so } \frac{\mathrm{d} y}{\mathrm{~d} x}=2 z \cdot \frac{\mathrm{~d} z}{\mathrm{~d} x}$ Substituting to get $2 z \cdot \frac{\mathrm{~d} z}{\mathrm{~d} x}-4 z^{2} \tan x=2 z$ and thus $\frac{\mathrm{d} z}{\mathrm{~d} x}-2 z \tan x=1$	M1 M1 A1 M1 A1 (5)
(b)	$\begin{aligned} & \text { I.F. }=\mathrm{e}^{\int-2 \tan x \mathrm{dx}}=\mathrm{e}^{2 \ln \cos x}=\cos ^{2} x \\ & \therefore \frac{\mathrm{~d}}{\mathrm{~d} x}\left(z \cos ^{2} x\right)=\cos ^{2} x \quad \therefore z \cos ^{2} x=\int \cos ^{2} x d x \\ & \quad \therefore z \cos ^{2} x \quad=\int \frac{1}{2}(\cos 2 x+1) \mathrm{d} x=\frac{1}{4} \sin 2 x+\frac{1}{2} x+c \\ & \therefore z=\frac{1}{2} \tan x+\frac{1}{2} x \sec ^{2} x+c \sec ^{2} x \end{aligned}$	M1 A1 M1 M1 A1 A1 (6)
(c)	$\therefore y=\left(\frac{1}{2} \tan x+\frac{1}{2} x \sec ^{2} x+c \sec ^{2} x\right)^{2}$	B1ft (1) 12

Question Number	Scheme	Marks
8(a)	Differentiate twice and obtaining $\frac{\mathrm{d} y}{\mathrm{~d} x}=\lambda \sin 5 x+5 \lambda x \cos 5 x \text { and } \frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=10 \lambda \cos 5 x-25 \lambda x \sin 5 x$	M1 A1
	Substitute to give $\lambda=\frac{3}{10}$	M1 A1
(b)	Complementary function is $y=A \cos 5 x+B \sin 5 x$ or $P \mathrm{e}^{5 i x}+Q \mathrm{e}^{-5 i x}$	M1 A1
	So general solution is $y=A \cos 5 x+B \sin 5 x+\frac{3}{10} x \sin 5 x$ or in exponential form	A1ft (3)
(c)	$y=0$ when $x=0$ means $A=0$	B1
	$\frac{\mathrm{d} y}{\mathrm{~d} x}=5 B \cos 5 x+\frac{3}{10} \sin 5 x+\frac{3}{2} x \cos 5 x$ and at $x=0 \frac{\mathrm{~d} y}{\mathrm{~d} x}=5$ and so $5=5 A$	M1 M1
	So $B=1$	A1
	So $y=\sin 5 x+\frac{3}{10} x \sin 5 x$	A1 (5)
(d)	 "Sinusoidal" through O amplitude becoming larger Crosses x axis at $\frac{\pi}{5}, \frac{2 \pi}{5}, \frac{3 \pi}{5}, \frac{4 \pi}{5}$	B1 B1 (2)

Further copies of this publication are available from
Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN
Telephone 01623467467
Fax 01623450481
Email publications@linneydirect.com
Order Code UA023928 Summer 2010

For more information on Edexcel qualifications, please visit www.edexcel.com/ quals

Edexcel Limited. Registered in England and Wales no. 4496750
Registered Office: One90 High Holborn, London, WC1V 7BH

Mark Scheme (Results)

June 2011

GCE Further Pure FP2 (6668) Paper 1

Edexcel is one of the leading examining and awarding bodies in the UK and throughout the world. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers.

Through a network of UK and overseas offices, Edexcel's centres receive the support they need to help them deliver their education and training programmes to learners.

For further information, please call our GCE line on 08445760025 or visit our website at www.edexcel.com.

If you have any subject specific questions about the content of this Mark Scheme that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

Ask The Expert can be accessed online at the following link: http://www.edexcel.com/Aboutus/contact-us/

June 2011
Publications Code UA027968
All the material in this publication is copyright
© Edexcel Ltd 2011
advancing learning, changing lives

EDEXCEL GCE MATHEMATICS

General Instructions for Marking

1. The total number of marks for the paper is 75 .
2. The Edexcel Mathematics mark schemes use the following types of marks:

- M marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- B marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.

3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes and can be used if you are using the annotation facility on ePEN.

- bod - benefit of doubt
- ft - follow through
- the symbol wifl be used for correct ft
- cao - correct answer only
- cso - correct solution only. There must be no errors in this part of the question to obtain this mark
- isw - ignore subsequent working
- awrt - answers which round to
- SC: special case
- oe - or equivalent (and appropriate)
- dep - dependent
- indep - independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper
- \quad The second mark is dependent on gaining the first mark

June 2011

Further Pure Mathematics FP 26668

 Mark Scheme| Question
 Number | Scheme | Marks |
| :--- | :--- | :--- |
| 1. | $3 x=(x-4)(x+3) \quad x^{2}-4 x-12=0$
 $x=-2, \quad x=6$
 both
 Other critical values are $x=-3, \quad x=0$
 $-3<x<-2, \quad 0<x<6$ | M1 |
| | $1^{\text {st }}$M1 for $\pm\left(x^{2}-4 x-12\right)-$ ' $=0$ ' not required.
 B marks can be awarded for values appearing in solution e.g. on sketch
 of graph or in final answer.
 $2^{\text {nd }}$ M1 for attempt at method using graph sketch or + /--
 If cvs correct but correct inequalities are not strict award A1A0.
 B1, B1
 M1 A1 A1 | |

Question Number	Scheme	Marks
(a)	$\begin{aligned} & \frac{\mathrm{d}^{3} y}{\mathrm{~d} x^{3}}=\mathrm{e}^{x}\left(2 y \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}+2\left(\frac{\mathrm{~d} y}{\mathrm{~d} x}\right)^{2}+2 y \frac{\mathrm{~d} y}{\mathrm{~d} x}\right)+\mathrm{e}^{x}\left(2 y \frac{\mathrm{~d} y}{\mathrm{~d} x}+y^{2}+1\right) \\ & \frac{\mathrm{d}^{3} y}{\mathrm{~d} x^{3}}=\mathrm{e}^{x}\left(2 y \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}+2\left(\frac{\mathrm{~d} y}{\mathrm{~d} x}\right)^{2}+4 y \frac{\mathrm{~d} y}{\mathrm{~d} x}+y^{2}+1\right) \quad(k=4) \end{aligned}$	M1 A1 A1 (3)
(b)	$\begin{aligned} & \left(\frac{d^{2} y}{d x^{2}}\right)_{0}=e^{0}(4+1+1)=6 \\ & \left(\frac{d^{3} y}{d x^{3}}\right)_{0}=e^{0}(12+8+8+1+1)=30 \\ & y=1+2 x+\frac{6 x^{2}}{2}+\frac{30 x^{3}}{6}=1+2 x+3 x^{2}+5 x^{3} \end{aligned}$	B1 B1 M1 A1ft
(a) (b)	$1^{\text {st }}$ M1 for evidence of Product Rule $1^{\text {st }}$ A1 for completely correct expression or equivalent $2^{\text {nd }}$ A1 for correct expression or $k=4$ stated $2^{\text {nd }} \mathrm{M} 1$ require four terms and denominators of 2 and 6 (might be implied) A1 follow through from their values in the final answer.	

Question Number	Scheme	Marks
3.	$\begin{aligned} & \frac{d y}{d x}+5 \frac{y}{x}=\frac{\ln x}{x^{2}} \quad \text { Integrating factor } \mathrm{e}^{\int \frac{5}{x}} \\ & e^{\int \frac{5}{x}}=e^{5 \ln x}=x^{5} \\ & \begin{aligned} & \int x^{3} \ln x d x=\frac{x^{4} \ln x}{4}-\int \frac{x^{3}}{4} d x \\ &=\frac{x^{4} \ln x}{4}-\frac{x^{4}}{16}(+C) \\ & x^{5} y=\frac{x^{4} \ln x}{4}-\frac{x^{4}}{16}+C \quad y=\frac{\ln x}{4 x}-\frac{1}{16 x}+\frac{C}{x^{5}} \end{aligned} \end{aligned}$	M1 A1 M1 M1 A1 A1 M1 A1 (8)
	$1^{\text {st }}$ M1 for attempt at correct Integrating Factor $1^{\text {st }}$ A1 for simplified IF $2^{\text {nd }}$ M1 for $\frac{\ln x}{x^{2}}$ times their IF to give their ' $x^{3} \ln x$, 3rd M1 for attempt at correct Integration by Parts $2^{\text {nd }}$ A1 for both terms correct $3^{\text {rd }} \mathrm{A} 1$ constant not required $4^{\text {th }}$ M1 $x^{5} y=$ their answer $+C$	

Question Number	Scheme	Marks
6.	$\begin{aligned} & 2+\cos \theta=\frac{5}{2} \Rightarrow \theta=\frac{\pi}{3} \\ & \frac{1}{2} \int(2+\cos \theta)^{2} d \theta=\frac{1}{2} \int\left(4+4 \cos \theta+\cos ^{2} \theta\right) d \theta \\ & =\frac{1}{2}\left[4 \theta+4 \sin \theta+\frac{\sin 2 \theta}{4}+\frac{\theta}{2}\right] \end{aligned}$ Substituting limits $\quad\left(\frac{1}{2}\left[\frac{9 \pi}{6}+4 \frac{\sqrt{3}}{2}+\frac{\sqrt{3}}{8}\right]=\frac{1}{2}\left(\frac{3 \pi}{2}+\frac{17 \sqrt{3}}{8}\right)\right)$ Area of triangle $=\frac{1}{2}(r \cos \theta)(r \sin \theta)=\frac{1}{2} \times \frac{25}{4} \times \frac{1}{2} \times \frac{\sqrt{3}}{2}\left(=\frac{25 \sqrt{3}}{32}\right)$ Area of $R=\frac{3 \pi}{4}+\frac{17 \sqrt{3}}{16}-\frac{25 \sqrt{3}}{32}=\frac{3 \pi}{4}+\frac{9 \sqrt{3}}{32}$	B1 M1 M1 A1 M1 M1 A1 M1 A1 (9)
	$1^{\text {st }} \mathrm{M} 1$ for use of $\frac{1}{2} \int r^{2} \mathrm{~d} \theta$ and correct attempt to expand $2^{\text {nd }} \mathrm{M} 1$ for use of double angle formula - $\sin 2 \theta$ required in square brackets $3^{\text {rd }}$ M1 for substituting their limits $4^{\text {th }}$ M1 for use of $\frac{1}{2}$ base x height $5^{\text {th }}$ M1 area of sector - area of triangle Please note there are no follow through marks on accuracy.	

Question Number	Scheme	Marks
(a)	$\begin{aligned} & \sin 5 \theta=\operatorname{Im}(\cos \theta+\mathrm{i} \sin \theta)^{5} \\ & 5 \cos ^{4} \theta(\mathrm{i} \sin \theta)+10 \cos ^{2} \theta\left(\mathrm{i}^{3} \sin ^{3} \theta\right)+\mathrm{i}^{5} \sin ^{5} \theta \\ & =\mathrm{i}\left(5 \cos ^{4} \theta \sin \theta-10 \cos ^{2} \theta \sin ^{3} \theta+\sin ^{5} \theta\right) \\ & \left(\operatorname{Im}(\cos \theta+\mathrm{i} \sin \theta)^{5}\right)=5 \sin \theta\left(1-\sin ^{2} \theta\right)^{2}-10 \sin ^{3} \theta\left(1-\sin ^{2} \theta\right)+\sin ^{5} \theta \\ & \left.\sin 5 \theta=16 \sin ^{5} \theta-20 \sin ^{3} \theta+5 \sin \theta \quad \quad^{*}\right) \end{aligned}$	B1 M1 A1 M1 A1cso (5)
(b)	$\begin{aligned} & 16 \sin ^{5} \theta-20 \sin ^{3} \theta+5 \sin \theta=5\left(3 \sin \theta-4 \sin ^{3} \theta\right) \\ & 16 \sin ^{5} \theta-10 \sin \theta=0 \\ & \sin ^{4} \theta=\frac{5}{8} \quad \theta=1.095 \end{aligned}$ Inclusion of solutions from $\sin \theta=-\sqrt[4]{\frac{5}{8}}$ Other solutions: $\theta=2.046,4.237,5.188$ $\sin \theta=0 \Rightarrow \theta=0, \theta=\pi$ (3.142)	M1 M1 A1 M1 A1 B1
		$\begin{array}{r} (6) \\ \mathbf{1 1} \\ \hline \end{array}$
(a) (b)	Award B if solution considers Imaginary parts and equates to $\sin 5 \theta$ $1^{\text {st }}$ M1 for correct attempt at expansion and collection of imaginary parts $2^{\text {nd }}$ M1 for substitution powers of $\cos \theta$ $1^{\text {st }} \mathrm{M}$ for substituting correct expressions $2^{\text {nd }} \mathrm{M}$ for attempting to form equation Imply $3^{\text {rd }} \mathrm{M}$ if 4.237 or 5.188 seen. Award for their negative root. Ignore 2π but $2^{\text {nd }} \mathrm{A} 0$ if other extra solutions given.	

Question Number	Scheme	Marks
8. (a)	$\begin{aligned} & m^{2}+6 m+9=0 \quad m=-3 \\ & \text { C.F. } \quad x=(A+B t) e^{-3 t} \\ & \text { P.I. } \quad x=P \cos 3 t+Q \sin 3 t \\ & \dot{x}=-3 P \sin 3 t+3 Q \cos 3 t \\ & \ddot{x}=-9 P \cos 3 t-9 Q \sin 3 t \\ & (-9 P \cos 3 t-9 Q \sin 3 t)+6(-3 P \sin 3 t+3 Q \cos 3 t)+9(P \cos 3 t+Q \sin 3 t)=\cos \\ & -9 P+18 Q+9 P=1 \text { and }-9 Q-18 P+9 Q=0 \\ & P=0 \text { and } Q=\frac{1}{18} \\ & x=(A+B t) e^{-3 t}+\frac{1}{18} \sin 3 t \end{aligned}$	M1 A1 B1 M1 M1 M1 A1 A1ft (8)
(b)	$\begin{aligned} & t=0: \quad x=A=\frac{1}{2} \\ & \&=-3(A+B t) \mathrm{e}^{-3 t}+B \mathrm{e}^{-3 t}+\frac{3}{18} \cos 3 t \\ & t=0: \quad \&=-3 A+B+\frac{1}{6}=0 \quad B=\frac{4}{3} \\ & x=\left(\frac{1}{2}+\frac{4 t}{3}\right) \mathrm{e}^{-3 t}+\frac{1}{18} \sin 3 t \end{aligned}$	B1 M1 M1 A1 A1 (5)
(c)	$\begin{aligned} & t \approx \frac{59 \pi}{6}(\approx 30.9) \\ & x \approx-\frac{1}{18} \end{aligned}$	B1 B1ft (2) 15
(a) (b)	$1^{\text {st }}$ M1 Form auxiliary equation and correct attempt to solve. Can be implied from correct exponential. $2^{\text {nd }} \mathrm{M} 1$ for attempt to differentiate PI twice $3^{\text {rd }}$ M1 for substituting their expression into differential equation $4^{\text {th }} \mathrm{M} 1$ for substitution of both boundary values $1^{\text {st }} \mathrm{M} 1$ for correct attempt to differentiate their answer to part (a) $2^{\text {nd }}$ M1 for substituting boundary value	

Further copies of this publication are available from
Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623467467
Fax 01623450481
Email publication.orders@edexcel.com
Order Code UA027968 J une 2011

For more information on Edexcel qualifications, please visit www.edexcel.com/quals

Llywodraeth Cynulliad Cymru Welsh Assembly Government

Mark Scheme (Results)

Summer 2012

GCE Further Pure FP2 (6668) Paper 1

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at www.edexcel.com.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.
www.edexcel.com/contactus

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2012
Publications Code UA032240
All the material in this publication is copyright
© Pearson Education Ltd 2012

Summer 2012
 6668 Further Pure 2
 FP2 Mark Scheme

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
-There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
-All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
-Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
-When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
-Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

EDEXCEL GCE MATHEMATICS

General Instructions for Marking

1. The total number of marks for the paper is 75 .
2. The Edexcel Mathematics mark schemes use the following types of marks:

- M marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- B marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.

3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes and can be used if you are using the annotation facility on ePEN.

- bod - benefit of doubt
- ft - follow through
- the symbol $\sqrt{ }$ will be used for correct ft
- cao - correct answer only
- cso - correct solution only. There must be no errors in this part of the question to obtain this mark
- isw - ignore subsequent working
- awrt - answers which round to
- SC: special case
- oe - or equivalent (and appropriate)
- dep - dependent
- indep - independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper
- \square The second mark is dependent on gaining the first mark

4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.

General Principles for Core Mathematics Marking

(But note that specific mark schemes may sometimes override these general principles).

Method mark for solving $\mathbf{3}$ term quadratic:

1. Factorisation

$$
\begin{aligned}
\left(x^{2}+b x+c\right) & =(x+p)(x+q), \text { where }|p q|=|c|, \text { leading to } x=\ldots \\
\left(a x^{2}+b x+c\right) & =(m x+p)(n x+q), \text { where }|p q|=|c| \text { and }|m n|=|a|, \text { leading to } x=\ldots
\end{aligned}
$$

2. Formula

Attempt to use correct formula (with values for a, b and c), leading to $x=\ldots$
3. Completing the square

Solving $x^{2}+b x+c=0: \quad\left(x \pm \frac{b}{2}\right)^{2} \pm q \pm c, q \neq 0$, leading to $x=\ldots$

Method marks for differentiation and integration:

1. Differentiation

Power of at least one term decreased by 1. ($x^{n} \rightarrow x^{n-1}$)
2. Integration

Power of at least one term increased by 1. ($x^{n} \rightarrow x^{n+1}$)

Use of a formula

Where a method involves using a formula that has been learnt, the advice given in recent examiners' reports is that the formula should be quoted first.
Normal marking procedure is as follows:
Method mark for quoting a correct formula and attempting to use it, even if there are mistakes in the substitution of values.
Where the formula is not quoted, the method mark can be gained by implication from correct working with values, but may be lost if there is any mistake in the working.

Exact answers

Examiners' reports have emphasised that where, for example, an exact answer is asked for, or working with surds is clearly required, marks will normally be lost if the candidate resorts to using rounded decimals.

Answers without working

The rubric says that these may not gain full credit. Individual mark schemes will give details of what happens in particular cases. General policy is that if it could be done "in your head", detailed working would not be required.

Summer 2012

6668 Further Pure Mathematics FP2

Mark Scheme

				Marks

Question Number	Scheme	Marks
3. (a)	$r=\sqrt{(-2)^{2}+(2 \sqrt{3})^{2}}=4$ $\tan \theta=-\sqrt{3} \quad$ (Also allow M mark for $\tan \theta=\sqrt{3}$) M mark can be implied by $\theta= \pm \frac{2 \pi}{3}$ or $\theta= \pm \frac{\pi}{3}$ $\theta=\frac{2 \pi}{3}$	B1 M1 A1
(b)	Finding the $4^{\text {th }}$ root of their r : For one root, dividing their θ by 4 : $\begin{aligned} & r=4^{1 / 4}(=\sqrt{2}) \\ & \theta=\frac{2 \pi}{3} \div 4=\frac{\pi}{6} \end{aligned}$ For another root, add or subtract a multiple of 2π to their θ and divide by 4 in correct order. $\sqrt{2}(\cos \theta+\mathrm{i} \sin \theta) \text {, where } \theta=-\frac{5 \pi}{6},-\frac{\pi}{3}, \frac{\pi}{6}, \frac{2 \pi}{3}$	M1 M1 M1 A1 A1
(a) (b)	Notes M1 Accept $\pm \sqrt{3}$ or $\pm \frac{1}{\sqrt{3}}$ A1 Accept awrt 2.1. A0 if in degrees. $2^{\text {nd }} \mathrm{M} 1$ for awrt 0.52 $1^{\text {st }} \mathrm{A} 1$ for two correct values $2^{\text {nd }} \mathrm{A} 1$ for all correct values values in correct form and no more	

Question Number	Scheme	Marks
4.	$\begin{aligned} & m^{2}+5 m+6=0 \quad m=-2,-3 \\ & \text { C.F. } \quad(x=) A \mathrm{e}^{-2 t}+B \mathrm{e}^{-3 t} \\ & \text { P.I. } \quad x=P \cos t+Q \sin t \\ & \dot{x}=-P \sin t+Q \cos t \\ & \ddot{x}=-P \cos t-Q \sin t \\ & (-P \cos t-Q \sin t)+5(-P \sin t+Q \cos t)+6(P \cos t+Q \sin t)=2 \cos t-\mathrm{si} \\ & -P+5 Q+6 P=2 \text { and }-Q-5 P+6 Q=-1, \text { and solve for } P \text { and } Q \\ & P=\frac{3}{10} \text { and } Q=\frac{1}{10} \\ & x=A \mathrm{e}^{-2 t}+B \mathrm{e}^{-3 t}+\frac{3}{10} \cos t+\frac{1}{10} \sin t \end{aligned}$ Notes $1^{\text {st }} \mathrm{M} 1$ form quadratic and attempt to solve (usual rules) $1^{\text {st }}$ B1 Accept negative signs for coefficients. Coefficients must be different. $2^{\text {nd }}$ M1for differentiating their trig PI twice $3^{\text {rd }} \mathrm{M} 1$ for substituting x, \dot{x} and \ddot{x} expressions $4^{\text {th }}$ M1 Form 2 equations in two unknowns and attempt to solve $1^{\text {st }} \mathrm{A} 1$ for one correct, $2^{\text {nd }} \mathrm{A} 1$ for two correct $2^{\text {nd }} \mathrm{B} 1$ for $x=$ their $\mathrm{CF}+$ their PI as functions of t Condone use of the wrong variable (e.g. x instead of t) for all marks except final B1.	M1 A1 B1 M1 M1 M1 A1 A1 B1 ft (9)

Question Number	Scheme	Marks
Alt 8(c)	$2^{\text {nd }}$ A1 for centre, $3^{\text {rd }}$ A1 for radius For geometric approach in this part. Centre (4,-2) on line, can be implied. Use of Pythagoras or trigonometry to find lengths of isosceles triangle $x=4-\sqrt{10}$ $(4-\sqrt{10})+\mathrm{i}(-2-\sqrt{10})$	B1
M1		
A1		
A1cao		

Further copies of this publication are available from Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623467467
Fax 01623450481
Email publication.orders@edexcel.com
Order Code UA032240 Summer 2012

Llywodraeth Cynulliad Cymru
Welsh Assembly Government
For more information on Edexcel qualifications, please visit our website www.edexcel.com

Rewarding Learning

edexcel

Mark Scheme (Results)

Summer 2013

GCE Further Pure Mathematics 2 (6668/01R)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at www.edexcel.com.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

www.edexcel.com/contactus

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2013
Publications Code UA035974
All the material in this publication is copyright
© Pearson Education Ltd 2013

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- \quad Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

EDEXCEL GCE MATHEMATI CS

General Instructions for Marking

1. The total number of marks for the paper is 75 .
2. The Edexcel Mathematics mark schemes use the following types of marks:

- M marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- B marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.

3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes:

- bod - benefit of doubt
- ft - follow through
- the symbol $\sqrt{ }$ will be used for correct ft
- cao - correct answer only
- cso - correct solution only. There must be no errors in this part of the question to obtain this mark
- isw - ignore subsequent working
- awrt - answers which round to
- SC: special case
- oe - or equivalent (and appropriate)
- dep - dependent
- indep - independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper
- - The second mark is dependent on gaining the first mark

4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
6. If a candidate makes more than one attempt at any question:

- If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
- If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.

7. Ignore wrong working or incorrect statements following a correct answer.
8. In some instances, the mark distributions (e.g. M1, B1 and A1) printed on the candidate's response may differ from the final mark scheme

General Principles for Pure Mathematics Marking

(But note that specific mark schemes may sometimes override these general principles).

Method mark for solving 3 term quadratic:

1. Factorisation

$$
\begin{aligned}
& \left(x^{2}+b x+c\right)=(x+p)(x+q), \text { where }|p q|=|c|, \text { leading to } \mathrm{x}= \\
& \left(a x^{2}+b x+c\right)=(m x+p)(n x+q), \text { where }|p q|=|c| \text { and }|m n|=|a|, \text { leading to } \mathrm{x}=
\end{aligned}
$$

2. Formula

Attempt to use correct formula (with values for a, b and c).
3. Completing the square

Solving $x^{2}+b x+c=0: \quad\left(x \pm \frac{b}{2}\right)^{2} \pm q \pm c, \quad q \neq 0, \quad$ leading to $\mathrm{x}=\ldots$

Method marks for differentiation and integration:

1. Differentiation

Power of at least one term decreased by 1. $\left(x^{n} \rightarrow x^{n-1}\right)$
2. Integration

Power of at least one term increased by 1. ($x^{n} \rightarrow x^{n+1}$)

Use of a formula

Where a method involves using a formula that has been learnt, the advice given in recent examiners' reports is that the formula should be quoted first.
Normal marking procedure is as follows:
Method mark for quoting a correct formula and attempting to use it, even if there are mistakes in the substitution of values.
Where the formula is not quoted, the method mark can be gained by implication from correct working with values, but may be lost if there is any mistake in the working.

Exact answers

Examiners' reports have emphasised that where, for example, an exact answer is asked for, or working with surds is clearly required, marks will normally be lost if the candidate resorts to using rounded decimals.

Answers without working

The rubric says that these may not gain full credit. Individual mark schemes will give details of what happens in particular cases. General policy is that if it could be done "in your head", detailed working would not be required.

Question Number	Scheme	Marks
1.	$z=x \quad w=\frac{x+2 \mathrm{i}}{}$	M1A1
	$\begin{gathered} w=\frac{1}{\mathrm{i}}+\frac{2 \mathrm{i}}{\mathrm{i} x} \\ u+\mathrm{i} v=-\mathrm{i}+\frac{2}{x} \end{gathered}$	
	$\left(u=\frac{2}{x}\right) \quad v=-1$	M1
	$\therefore w$ is on the line $v+1=0$	A1
		4 Marks

NOTES

M1 for replacing at least one z with x to obtain (ie show an appreciation that $y=0$)
A1 $w=\frac{x+2 \mathrm{i}}{\mathrm{i} x}$
M1 for writing w as $u+\mathrm{i} v$ and equating real or imaginary parts to obtain either u or v in terms of x or just a number

A1 for giving the equation of the line $v+1=0$ oe must be in terms of v

Question Number	Scheme	Marks
	Q1 - ALTERNATIVE 1: $w=\frac{x+i y+2 i}{i(x+i y)} \quad$ Replacing z with $x+i y$ $w=\frac{x+i y+2 i}{-y+i x} \times \frac{-y-i x}{-y-i x}$ $w=\frac{(x+i(y+2))(-y-i x)}{y^{2}+x^{2}}$ $w=\frac{2 x-i\left(x^{2}+y^{2}+2 y\right)}{y^{2}+x^{2}}$ $w=\frac{2 x-i x^{2}}{x^{2}}=\frac{2}{x}-i \quad$ Using $y=\mathbf{0}$. This is where the first M1 may be awarded. A1 if correct even if expression is unsimplified but denominator must be real $v=-1 \quad \mathrm{M} 1, \mathrm{~A} 1$ as in main scheme	M1A1 M1A1
	Q1 - ALTERNATIVE 2: $\begin{aligned} & z=\frac{2 i}{i w-1} \quad \text { Writing the transformation as a function of } w \\ & z=\frac{2 i}{i(u+i v)-1} \\ & z=\frac{2 i}{(-v-1)+i u} \times \frac{(-v-1)-i u}{(-v-1)-i u} \\ & z=\frac{2 u+2 i(-v-1)}{(-v-1)^{2}+u^{2}}=\frac{2 u}{(-v-1)^{2}+u^{2}}+i\left(\frac{2(-v-1)}{(-v-1)^{2}+u^{2}}\right) \\ & \left(\frac{2(-v-1)}{(v-1)^{2}+u^{2}}\right)=0 \text { or simply }-2(v+1)=0 \quad \text { Using } y=\mathbf{0} . \text { This is } \end{aligned}$ where the first M1 may be awarded. A1 if correct even if expression is unsimplified but denominator must be real $v=-1 \quad \mathrm{M} 1, \mathrm{~A} 1$ as in main mark scheme above	M1A1 M1A1

Question Number	Scheme	Marks
2.	NB Allow the first 5 marks with = instead of inequality	
	$\frac{6 x}{3-x}>\frac{1}{x+1}$	
	$6 x(3-x)(x+1)^{2}-(3-x)^{2}(x+1)>0$	M1
	$(3-x)(x+1)\left(6 x^{2}+6 x-3+x\right)>0$	
	$(3-x)(x+1)(3 x-1)(2 x+3)>0$	M1dep
	Critical values 3, -1	B1
	and $-\frac{3}{2}, \frac{1}{3}$	A1, A1
	Use critical values to obtain both of $-\frac{3}{2}<x<-1 \quad \frac{1}{3}<x<3$	M1A1cso
		7 Marks

M1 for multiplying through by $(x+1)^{2}(3-x)^{2}$
OR: for collecting one side of the inequality and attempting to form a single fraction (see alternative in mark scheme)

M1dep for collecting on one side of the inequality and factorising the result of the above (usual rules for factorising the quadratic)
OR: for factorising the numerator - must be a three term quadratic - usual rules for factorising a quadratic (see alternative in mark scheme)

Dependent on the first M mark

B1 for the critical values
3, - 1

A1 for either $-\frac{3}{2}$ or $\frac{1}{3}$
A1 for the second of these
NB: the critical values need not be shown explicitly - they may be shown on a sketch or just appear in the ranges or in the working for the ranges.

M1 using their 4 critical values to obtain appropriate ranges e.g. use a sketch graph of a quartic, (which must be the correct shape and cross the x-axis at the cvs) or a table or number line

A1cso for both of $-\frac{3}{2}<x<-1, \quad \frac{1}{3}<x<3$

Notes for Question 2 Continued

Set notation acceptable i.e. $\left(-\frac{3}{2},-1\right) \cup\left(\frac{1}{3}, 3\right)$ All brackets must be round; if square brackets appear anywhere then A0.

If both ranges correct, no working is needed for the last 2 marks, but any working shown must be correct.
Purely graphical methods are unacceptable as the question specifies "Use algebra...".

Q2 - ALTERNATIVE 1:

$\frac{6 x}{3-x}-\frac{1}{x+1}>0$
$\frac{6 x(x+1)-(3-x)}{(3-x)(x+1)}>0$

$$
\frac{(3 x-1)(2 x+3)}{(3-x)(x+1)}>0
$$

Critical values $\quad 3,-1$
and $-\frac{3}{2}, \frac{1}{3}$

Use critical values to obtain both of $-\frac{3}{2}<x<-1 \quad \frac{1}{3}<x<3$

Notes for Question 3

Question 3a

M1 for attempting the PFs - any valid method

A1 for correct PFs $\frac{2}{(r+1)(r+3)}=\frac{1}{r+1}-\frac{1}{r+3}$
N.B. for M mark you may see no working. Some will just use the "cover up" method to write the answer directly. This is acceptable. Award M1A1 if correct, M0A0 otherwise.

Question 3b

If all work in r instead of n, penalise last A mark only.

M1 for using their PFs to list at least 3 terms at the start and 2 terms at the end so the cancelling can be seen. Must start at $r=1$ and end at $r=n$

A1ft for correct terms follow through their PFs

M1 for picking out the (4) remaining terms and attempting to form a single fraction (unsimplified numerator with at least 2 terms correct)

A1cso for $\frac{n(5 n+13)}{6(n+2)(n+3)} \quad *$ (Check all steps in the working are correct - in particular 3rd line from end in the mark scheme.)

NB: If final answer reached correctly from $\frac{1}{2}+\frac{1}{3}-\frac{1}{n+2}-\frac{1}{n+3}$ (i.e. working shown from this point onwards) give 4/4 (even without individual terms listed)

Notes for Question 3 Continued

Question 3c
M1 for attempting $\sum_{1}^{100}-\sum_{1}^{9} \quad$ using the result from (b) (with numbers substituted) Use of $\sum_{1}^{100}-\sum_{1}^{10}$ scores M0

A1cso \quad for sum $=0.155$

Question Number	Scheme	Marks
	Alternative: $y=2+2 x+a x^{2}+b x^{3}$ $\left(2+2 x+a x^{2}+b x^{3}\right)(2 a+6 b x)+\left(2+2 a x+3 b x^{2} \ldots\right)^{2}$ $+5\left(2+2 x+a x^{2}+b x^{3}\right)=0$	M1
	Coeffs $x^{0}: 4 a+4+10=0 \quad a=-\frac{7}{2}$ M1 Coeffs $x: 4 a+12 b+8 a+10=0 \Rightarrow b=\frac{8}{3}$ A1 $y=2+2 x-\frac{7}{2} x^{2}+\frac{8}{3} x^{3}$ A1 NOTES	A1

NOTES

Accept the dash notation in this question

Question 4a

M1 for using the product rule to differentiate $y \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}$.
M1 for differentiating $5 y$ and using the product rule or chain rule to differentiate $\left(\frac{\mathrm{d} y}{\mathrm{~d} x}\right)^{2}$
$\mathrm{A} 2,1,0$ for $\frac{\mathrm{d}^{3} y}{\mathrm{~d} x^{3}}=\frac{-5 \frac{\mathrm{~d} y}{\mathrm{~d} x}-3\left(\frac{\mathrm{~d} y}{\mathrm{~d} x}\right) \frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}}{y}$
Give A1A1 if fully correct, A1A0 if one error and A0A0 if more than one error. If there are two sign errors and no other error then give A1A0.

Do NOT deduct if the two $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}$ terms are shown separately.

Alternative to Q4a

Can be re-arranged first and then differentiated.
M1M1 for differentiating, product and chain rule both needed (or quotient rule as an alternative to product rule)
$\mathrm{A} 2,1,0 \quad$ for $\frac{\mathrm{d}^{3} y}{\mathrm{~d} x^{3}}=\frac{1}{y^{2}}\left(\frac{\mathrm{~d} y}{\mathrm{~d} x}\right)^{3}-\frac{2}{y}\left(\frac{\mathrm{~d} y}{\mathrm{~d} x}\right)\left(\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}\right) \quad$ Give A1A1 if fully correct, A1A0 if one error and A0A0 if more than one error

Notes for Question 4 Continued

Question 4b

M1 for substituting $\frac{\mathrm{d} y}{\mathrm{~d} x}=2$ and $y=2$ in the equation to obtain a numerical value for $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}$
A1 for $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=-7$
A1 for obtaining the correct value, 16 , for $\frac{\mathrm{d}^{3} y}{\mathrm{~d} x^{3}}$
M1 for using the series $y=\mathrm{f}(x)=\mathrm{f}(0)+x \mathrm{f}^{\prime}(0)+\frac{x^{2}}{2!} \mathrm{f}^{\prime \prime}(0)+\frac{x^{3}}{3!} \mathrm{f}^{\prime \prime \prime}(0)+\ldots \quad$ (2! or 2,3 ! or 6) (The general series may be shown explicitly or implied by their substitution)
A1 for $y=2+2 x-\frac{7}{2} x^{2}+\frac{8}{3} x^{3}$ oe Must have $y=$.. and be in ascending powers of

Alternative to Q4b

M1 for setting $y=2+2 x+a x^{2}+b x^{3}$
M1 for $\left(2+2 x+a x^{2}+b x^{3}\right)(2 a+6 b x)+\left(2+2 a x+3 b x^{2} \ldots\right)^{2}+5\left(2+2 x+a x^{2}+b x^{3}\right)=0$
A1 for equating constant terms to get $a=-\frac{7}{2}$
A1 for equating coeffs of x^{2} to get $b=\frac{8}{3}$
A1 for $y=2+2 x-\frac{7}{2} x^{2}+\frac{8}{3} x^{3}$

Question Number	Scheme	Marks
	Alternative: c may not appear explicitly: $y \sec ^{2} \frac{\pi}{6}-2 \sec ^{2} \frac{\pi}{3}=2 \ln \left(\frac{\sec \frac{\pi}{6}}{\sec \frac{\pi}{3}}\right)$ $\frac{4}{3} y-8=2 \ln \frac{1}{\sqrt{3}}$ $y=\frac{3}{4}\left(8+2 \ln \frac{1}{\sqrt{3}}\right)=6+\frac{3}{2} \ln \frac{1}{\sqrt{3}}=6-\frac{3}{4} \ln 3$ M1A1 	M1A1

NOTES

Question 5a

M1 for the $\mathrm{e}^{\int 2 \tan x \mathrm{~d} x}$ or $\mathrm{e}^{\int \tan x \mathrm{~d} x}$ and attempting the integration - $\mathrm{e}^{(2) \ln \sec x}$ should be seen if final result is not $\sec ^{2} x$

A1 for $\mathrm{IF}=\sec ^{2} x$
M1 for multiplying the equation by their IF and attempting to integrate the lhs
M1dep for attempting the integration of the rhs $\sin 2 x=2 \sin x \cos x$ and $\sec x=\frac{1}{\cos x}$ needed. Dependent on the second M mark

A1cao for all integration correct ie $y \sec ^{2} x=2 \ln \sec x(+c)$ constant not needed
A1ft for re-writing their answer in the form $y=\ldots$. Accept any equivalent form but the constant must be present. eg $y=\frac{\ln \left(A \sec ^{2} x\right)}{\sec ^{2} x}, y=\cos ^{2} x\left[\ln \left(\sec ^{2} x\right)+c\right]$

Notes for Question 5 Continued

Question 5b

M1 for using the given values $y=2, x=\frac{\pi}{3}$ in their general solution to obtain a value for the constant of integration

A1 for eg $c=8-2 \ln 2$ or $A=\frac{1}{4} \mathrm{e}^{8} \quad$ (Check the constant is correct for their correct answer for (a)).
Answers to 3 significant figures acceptable here and can include $\cos \frac{\pi}{3}$ or $\sec \frac{\pi}{3}$
M1 for using their constant and $x=\frac{\pi}{6}$ in their general solution and attempting the simplification to the required form.

A1cao for $y=6-\frac{3}{4} \ln 3 \quad\left(\frac{3}{4}\right.$ or 0.75$)$

Alternative to 5b

M1 for finding the difference between $y \sec ^{2} \frac{\pi}{6}$ and $2 \sec ^{2} \frac{\pi}{3}$ (or equivalent with their general solution)
A1 for $y \sec ^{2} \frac{\pi}{6}-2 \sec ^{2} \frac{\pi}{3}=2 \ln \left(\frac{\sec \frac{\pi}{6}}{\sec \frac{\pi}{3}}\right)$
M1 for re-arranging to $y=\ldots$ and attempting the simplification to the required form

A1cao for $y=6-\frac{3}{4} \ln 3 \quad\left(\frac{3}{4}\right.$ or 0.75$)$

Question Number	Scheme	Marks
6(a)	$\begin{aligned} & z^{n}+z^{-n}=\mathrm{e}^{\mathrm{i} n \theta}+\mathrm{e}^{-\mathrm{in} \theta} \\ & =\cos n \theta+\mathrm{i} \sin n \theta+\cos n \theta-\mathrm{i} \sin n \theta \\ & =2 \cos n \theta \quad * \end{aligned}$	M1A1
(b)	$\left(z+z^{-1}\right)^{5}=32 \cos ^{5} \theta$	B1
	$\left(z+z^{-1}\right)^{5}=z^{5}+5 z^{3}+10 z+10 z^{-1}+5 z^{-3}+z^{-5}$	M1A1
	$32 \cos ^{5} \theta=\left(z^{5}+z^{-5}\right)+5\left(z^{3}+z^{-3}\right)+10\left(z+z^{-1}\right)$	
	$=2 \cos 5 \theta+10 \cos 3 \theta+20 \cos \theta$	M1
	$\cos ^{5} \theta=\frac{1}{16}(\cos 5 \theta+5 \cos 3 \theta+10 \cos \theta)$	A1
		(5)
(c)	$\cos 5 \theta+5 \cos 3 \theta+10 \cos \theta=-2 \cos \theta$	M1
	$16 \cos ^{5} \theta=-2 \cos \theta$	A1
	$2 \cos \theta\left(8 \cos ^{4} \theta+1\right)=0$	
	$8 \cos ^{4} \theta+1=0 \quad$ no solution	B1
	$\cos \theta=0$	
	$\theta=\frac{\pi}{2}, \frac{3 \pi}{2}$	A1
		11 Marks

Notes for Question 6

Question 6a

M1 for using de Moivre's theorem to show that either $z^{n}=\cos n \theta+i \sin n \theta$ or $z^{-n}=\cos n \theta-i \sin n \theta$

A1 for completing to the given result $z^{n}+z^{n}=2 \cos n \theta \quad *$

Question 6b

B1 for using the result in (a) to obtain $\left(z+z^{-1}\right)^{5}=32 \cos ^{5} \theta \quad$ Need not be shown explicitly.

M1 for attempting to expand $\left(z+z^{-1}\right)^{5}$ by binomial, Pascal's triangle or multiplying out the brackets. If ${ }^{n} C_{r}$ is used do not award marks until changed to numbers

A1 for a correct expansion $\left(z+z^{-1}\right)^{5}=z^{5}+5 z^{3}+10 z+10 z^{-1}+5 z^{-3}+z^{-5}$

M1 for replacing $\left(z^{5}+z^{-5}\right),\left(z^{3}+z^{-3}\right),\left(z+z^{-1}\right)$ with $2 \cos 5 \theta, 2 \cos 3 \theta, 2 \cos \theta$ and equating their revised expression to their result for $\left(z+z^{-1}\right)^{5}=32 \cos ^{5} \theta$

A1cso for $\cos ^{5} \theta=\frac{1}{16}(\cos 5 \theta+5 \cos 3 \theta+10 \cos \theta) \quad *$

Question 6c

M1 for attempting re-arrange the equation with one side matching the bracket in the result in (b) Question states "hence", so no other method is allowed.

A1 for using the result in (b) to obtain $16 \cos ^{5} \theta=-2 \cos \theta$ oe
B1 for stating that there is no solution for $8 \cos ^{4} \theta+1=0$ oe eg $8 \cos ^{4} \theta+1 \neq 08 \cos ^{4} \theta+1>0$ or "ignore" but $\cos \theta=\sqrt[4]{-\frac{1}{8}}$ without comment gets B0

A1 for $\theta=\frac{\pi}{2}$ and $\frac{3 \pi}{2}$ and no more in the range. Must be in radians, can be in decimals (1.57..., 4.71... 3 sf or better)

Question Number	Scheme	Marks
7(a)	$\begin{aligned} & y=\lambda t^{2} \mathrm{e}^{3 t} \\ & \frac{\mathrm{~d} y}{\mathrm{~d} t}=2 \lambda t \mathrm{e}^{3 t}+3 \lambda t^{2} \mathrm{e}^{3 t} \\ & \frac{\mathrm{~d}^{2} y}{\mathrm{~d} t^{2}}=2 \lambda \mathrm{e}^{3 t}+6 \lambda t \mathrm{e}^{3 t}+6 \lambda t \mathrm{e}^{3 t}+9 \lambda t^{2} \mathrm{e}^{3 t} \\ & 2 \lambda \mathrm{e}^{3 t}+6 \lambda t \mathrm{e}^{3 t}+6 \lambda t \mathrm{e}^{3 t}+9 \lambda t^{2} \mathrm{e}^{3 t}-12 \lambda t \mathrm{e}^{3 t}-18 \lambda t^{2} \mathrm{e}^{3 t}+9 \lambda t^{2} \mathrm{e}^{3 t}=6 \mathrm{e}^{3 t} \\ & \lambda=3 \end{aligned}$ NB. Candidates who give $\lambda=3$ without all this working get $5 / 5$ provided no erroneous working is seen.	M1A1 A1 M1dep A1cso (5)
(b)	$\begin{aligned} & m^{2}-6 m+9=0 \\ & (m-3)^{2}=0 \\ & \text { C.F. }(y=)(A+B t) \mathrm{e}^{3 t} \\ & \text { G.S. } y=(A+B t) \mathrm{e}^{3 t}+3 t^{2} \mathrm{e}^{3 t} \end{aligned}$	M1A1 A1ft (3)
(c)	$\begin{aligned} & t=0 \quad y=5 \quad \Rightarrow A=5 \\ & \frac{\mathrm{~d} y}{\mathrm{~d} t}=B \mathrm{e}^{3 \mathrm{t}}+3(A+B t) \mathrm{e}^{3 \mathrm{t}}+6 t \mathrm{e}^{3 \mathrm{t}}+9 t^{2} \mathrm{e}^{3 \mathrm{t}} \\ & \frac{\mathrm{~d} y}{\mathrm{~d} t}=4 \quad 4=B+15 \\ & B=-11 \end{aligned}$ Solution: $\quad y=(5-11 t) \mathrm{e}^{3 t}+3 t^{2} \mathrm{e}^{3 t}$	B1 M1 M1dep A1 A1ft (5) 13 Marks

Notes for Question 7

Question 7a

M1 for differentiating $y=\lambda t^{2} \mathrm{e}^{3 t}$ wrt t. Product rule must be used.

A1 for correct differentiation ie $\frac{\mathrm{d} y}{\mathrm{~d} t}=2 \lambda t \mathrm{e}^{3 t}+3 \lambda t^{2} \mathrm{e}^{3 t}$

A1 for a correct second differential $\frac{\mathrm{d}^{2} y}{\mathrm{~d} t^{2}}=2 \lambda \mathrm{e}^{3 t}+6 \lambda t \mathrm{e}^{3 t}+6 \lambda t \mathrm{e}^{3 t}+9 \lambda t^{2} \mathrm{e}^{3 t}$

M1dep for substituting their differentials in the equation and obtaining a numerical value for λ
Dependent on the first M mark.
A1cso for $\lambda=3$ (no incorrect working seen)

NB. Candidates who give $\lambda=3$ without all this working get $5 / 5$ provided no erroneous working is seen.
Candidates who attempt the differentiation should be marked on that. If they then go straight to $\lambda=3$ without showing the substitution, give M1A1 if differentiation correct and M1A0 otherwise, as the solution is incorrect. If $\lambda \neq 3$ then the M mark is only available if the substitution is shown.

Question 7b

M1 for solving the 3 term quadratic auxiliary equation to obtain a value or values for m (usual rules for solving a quadratic equation)

A1 for the CF $(y=)(A+B t) \mathrm{e}^{3 t}$
A1ft for using their CF and their numerical value of λ in the particular integral to obtain the general solution $\quad y=(A+B t) \mathrm{e}^{3 t}+3 t^{2} \mathrm{e}^{3 t} \quad$ Must have $y=\ldots$ and rhs must be a function of t.

Question 7c

B1 for deducing that $A=5$
M1 for differentiating their GS to obtain $\frac{\mathrm{d} y}{\mathrm{~d} t}=\ldots$ The product rule must be used.

M1dep for using $\frac{\mathrm{d} y}{\mathrm{~d} t}=4$ and their value for A in their $\frac{\mathrm{d} y}{\mathrm{~d} t}$ to obtain an equation for B Dependent on the previous M mark (of (c))

A1cao and cso for $B=-11$
A1ft for using their numerical values A and B in their GS from (b) to obtain the particular solution. Must have $y=\ldots$ and rhs must be a function of t.

Question Number	Scheme	Marks
8 (a)	$A=(4 \times) \int_{0}^{\frac{\pi}{4}} \frac{9}{2} \cos 2 \theta \mathrm{~d} \theta$	M1A1(limits for A mark only)
	$\begin{aligned} & =18\left[\frac{\sin 2 \theta}{2}\right]_{0}^{\frac{\pi}{4}} \\ & 9\left[\sin \frac{\pi}{2}-0\right]=9 \end{aligned}$	M1 A1
		(4)
(b)	$r=3(\cos 2 \theta)^{\frac{1}{2}}$	
	$r \sin \theta=3(\cos 2 \theta)^{\frac{1}{2}} \sin \theta$	M1
	$\frac{\mathrm{d}}{\mathrm{~d} \theta}(r \sin \theta)=\left\{-3 \times \frac{1}{2}(\cos 2 \theta)^{-\frac{1}{2}} \times 2 \sin 2 \theta \sin \theta+3(\cos 2 \theta)^{\frac{1}{2}} \cos \theta\right\}$	M1depA1
	At max/min: $\frac{-3 \sin 2 \theta \sin \theta}{(\cos 2 \theta)^{\frac{1}{2}}}+3(\cos 2 \theta)^{\frac{1}{2}} \cos \theta=0$	M1
	$\sin 2 \theta \sin \theta=\cos 2 \theta \cos \theta$	
	$2 \sin ^{2} \theta \cos \theta=\left(1-2 \sin ^{2} \theta\right) \cos \theta$	
	$\cos \theta\left(1-4 \sin ^{2} \theta\right)=0$	
	$(\cos \theta=0) \sin ^{2} \theta=\frac{1}{4}$	
	$\sin \theta= \pm \frac{1}{2} \quad \theta= \pm \frac{\pi}{6}$	M1A1
	$r \sin \frac{\pi}{6}=3\left(\cos \frac{\pi}{3}\right)^{\frac{1}{2}} \times \frac{1}{2}=\frac{3 \sqrt{2}}{4}$	B1
	$\therefore \text { length } P S=\frac{3 \sqrt{2}}{2}, \quad \text { length } P Q=6 \text {) }$	

Question Number	Scheme	Marks
	Shaded area $=6 \times \frac{3 \sqrt{2}}{2}-9,=9 \sqrt{2}-9$ oe	M1,A1 (9)
	13 Marks	
NOTES		

NOTES

Question 8a

M1 for $A=\frac{1}{2} \int r^{2} \mathrm{~d} \theta=\frac{1}{2} \int \alpha \cos 2 \theta \mathrm{~d} \theta$ with $\alpha=3$ or $9 \quad 4$ or 2 and limits not needed for this mark ignore any shown.

A1 for $A=(4 \times) \int_{0}^{\frac{\pi}{4}} \frac{9}{2} \cos 2 \theta \mathrm{~d} \theta$ Correct limits $\left(0, \frac{\pi}{4}\right)$ with multiple 4 or $\left(-\frac{\pi}{4}, \frac{\pi}{4}\right)$ with multiple 2 needed. 4 or 2 may be omitted here, provided it is used later.

M1 for the integration $\cos 2 \theta$ to become $\pm\left(\frac{1}{2}\right) \sin 2 \theta \quad$ Give M0 for $\pm 2 \sin 2 \theta$. Limits and 4 or 2 not needed

A1cso for using the limits and 4 or 2 as appropriate to obtain 9

ALTERNATIVES ON FOLLOWING PAGES

Notes for Question 8 Continued

Question 8b

M1 for $r \sin \theta=3(\cos 2 \theta)^{\frac{1}{2}} \sin \theta$ or $r^{2} \sin ^{2} \theta=9 \cos 2 \theta \sin ^{2} \theta \quad 3$ or 9 allowed
M1dep for differentiating the rhs of the above wrt θ. Product and chain rule must be used.
A1 for $\frac{\mathrm{d}}{\mathrm{d} \theta}(r \sin \theta)=\left\{-3 \times \frac{1}{2}(\cos 2 \theta)^{-\frac{1}{2}} \times 2 \sin 2 \theta \sin \theta+3(\cos 2 \theta)^{\frac{1}{2}} \cos \theta\right\}$ or correct differentiation of $r^{2} \sin ^{2} \theta=9 \cos 2 \theta \sin ^{2} \theta$

M1 for equating their expression for $\frac{\mathrm{d}}{\mathrm{d} \theta}(r \sin \theta)$ to 0
M1dep for solving the resulting equation to $\sin k \theta=\ldots$ or $\cos k \theta=\ldots$ incuding the use of the appropriate trig formulae (must be correct formulae)

A1 for $\sin \theta=\frac{1}{2}$ or $\cos \theta=\frac{\sqrt{3}}{2}$ or $\theta=(\pm) \frac{\pi}{6}$ oe ignore extra answers
B1 for the length of $\frac{1}{2} P S=\frac{3 \sqrt{2}}{4}$ (1.0606...) or of PS May not be shown explicitly. Give this mark if the correct area of the rectangle is shown. Length of PQ is not needed for this mark.

M1 for attempting the shaded area by their $P S \times 6$ - their answer to (a). There must be evidence of PS being obtained using their θ

A1 for $9 \sqrt{2}-9$ oe $3.7279 \ldots$...or awrt 3.73
ALTERNATIVES ON FOLLOWING PAGES

Option 1 - using $r \sin \theta$ with/without manipulation of $\cos 2 \theta$ before differentiation

Use of $3(\cos 2 \theta)^{\frac{1}{2}} \sin \theta$	First M mark
$\begin{aligned} & 3(\cos 2 \theta)^{\frac{1}{2}} \cos \theta-3\left(\frac{1}{2}\right)(\cos 2 \theta)^{-\frac{1}{2}}(2) \sin 2 \theta \sin \theta=0 \\ & 3(\cos 2 \theta)^{\frac{1}{2}} \cos \theta-3(\cos 2 \theta)^{-\frac{1}{2}} \sin 2 \theta \sin \theta=0 \end{aligned}$	Second (dependent) M mark for differentiating using the product rule A1 awarded here for correct derivative and M1 for setting their derivative equal to 0
$\begin{aligned} & 3(\cos 2 \theta)^{\frac{1}{2}}-6(\cos 2 \theta)^{-\frac{1}{2}} \sin ^{2} \theta=0 \\ & \cos 2 \theta-2 \sin ^{2} \theta=0 \end{aligned}$	Use of $\sin 2 \theta=2 \sin \theta \cos \theta$, division by $3 \cos \theta$ and multiplication by $(\cos 2 \theta)^{\frac{1}{2}}$ simplify the equation but do not provide specific M marks
$\begin{aligned} & \left(1-2 \sin ^{2} \theta\right)-2 \sin ^{2} \theta=0 \\ & 4 \sin ^{2} \theta=1 \end{aligned}$	Use of $\cos 2 \theta=1-2 \sin ^{2} \theta$ gives next M mark provided a value of $\sin \theta$ or alt is reached with no errors seen
$\begin{aligned} & \sin \theta= \pm \frac{1}{2} \\ & \left(\theta=\frac{\pi}{6}\right) \end{aligned}$	Value of $\sin \theta$ reached with use of $\cos 2 \theta=\ldots$ and no method errors seen (arithmetic slips would be condoned) gives final M mark Second accuracy mark given here.

Use of $3\left(\cos ^{2} \theta-\sin ^{2} \theta\right)^{\frac{1}{2}} \sin \theta$	First M mark Use of $\cos 2 \theta=\cos ^{2} \theta-\sin ^{2} \theta$ gives 4th M mark provided a value of $\sin \theta$ or alt is reached with no errors seen after the differentiation
$\begin{aligned} & 3\left(\frac{1}{2}\right)\left(\cos ^{2} \theta-\sin ^{2} \theta\right)^{-\frac{1}{2}}(-2 \cos \theta \sin \theta-2 \sin \theta \cos \theta) \sin \theta \\ & \quad+3\left(\cos ^{2} \theta-\sin ^{2} \theta\right)^{\frac{1}{2}} \cos \theta=0 \\ & -6\left(\cos ^{2} \theta-\sin ^{2} \theta\right)^{-\frac{1}{2}} \cos \theta \sin ^{2} \theta+3\left(\cos ^{2} \theta-\sin ^{2} \theta\right)^{\frac{1}{2}} \cos \theta=0 \end{aligned}$	Second (dependent) M mark for differentiating using the product rule A1 awarded here for correct derivative and M1 for setting their derivative equal to 0
$\begin{aligned} & -6 \sin ^{2} \theta+3\left(\cos ^{2} \theta-\sin ^{2} \theta\right)=0 \\ & 4 \sin ^{2} \theta=1 \end{aligned}$	Multiplication by $\left(\cos ^{2} \theta-\sin ^{2} \theta\right)^{\frac{1}{2}}$, division by $3 \cos \theta$ and use of $\cos ^{2} \theta=1-\sin ^{2} \theta$ simplify the equation but do not provide specific M marks
$\begin{aligned} & \sin \theta= \pm \frac{1}{2} \\ & \left(\theta=\frac{\pi}{6}\right) \end{aligned}$	Value of $\sin \theta$ reached with use of $\cos 2 \theta=\ldots$ and no method errors seen (arithmetic slips would be condoned) gives final M mark Second accuracy mark given here.

Use of $3\left(2 \cos ^{2} \theta-1\right)^{\frac{1}{2}} \sin \theta$	First M mark Use of $\cos 2 \theta=2 \cos ^{2} \theta-1$ gives 4 th M mark provided a value of $\sin \theta$ or alt is reached with no errors seen after the differentiation
$\begin{aligned} & 3\left(\frac{1}{2}\right)\left(2 \cos ^{2} \theta-1\right)^{-\frac{1}{2}}(-4 \cos \theta \sin \theta) \sin \theta+3\left(2 \cos ^{2} \theta-1\right)^{\frac{1}{2}} \cos \theta=0 \\ & -6\left(2 \cos ^{2} \theta-1\right)^{-\frac{1}{2}} \cos \theta \sin ^{2} \theta+3\left(2 \cos ^{2} \theta-1\right)^{\frac{1}{2}} \cos \theta=0 \end{aligned}$	Second (dep) M mark for differentiating using the product rule A1 awarded here for correct derivative and M1 for setting their derivative equal to 0
$\begin{aligned} & -6 \sin ^{2} \theta+3\left(2 \cos ^{2} \theta-1\right)=0 \\ & 4 \sin ^{2} \theta=1 \text { or } 4 \cos ^{2} \theta=3 \end{aligned}$	Multiplication by $\left(\cos ^{2} \theta-\sin ^{2} \theta\right)^{\frac{1}{2}}$, division by $3 \cos \theta$ and use of $\sin ^{2} \theta=1-\cos ^{2} \theta$ or vice versa simplify the equation but do not provide specific M marks
$\begin{aligned} & \sin \theta= \pm \frac{1}{2} \text { or } \cos \theta= \pm \frac{\sqrt{3}}{2} \\ & \left(\theta=\frac{\pi}{6}\right) \end{aligned}$	Value of $\sin \theta$ or $\cos \theta$ reached with use of $\cos 2 \theta=\ldots$ and no method errors seen (arithmetic slips would be condoned) gives final M mark. Second accuracy mark given here.

Use of $3\left(1-2 \sin ^{2} \theta\right)^{\frac{1}{2}} \sin \theta$	First M mark Use of $\cos 2 \theta=2 \cos ^{2} \theta-1$ gives 4 th M mark provided a value of $\sin \theta$ or alt is reached with no errors seen after the differentiation
$\begin{aligned} & 3\left(\frac{1}{2}\right)\left(1-2 \sin ^{2} \theta\right)^{-\frac{1}{2}}(-4 \cos \theta \sin \theta) \sin \theta+3\left(1-2 \sin ^{2} \theta\right)^{\frac{1}{2}} \cos \theta=0 \\ & -6\left(1-2 \sin ^{2} \theta\right)^{-\frac{1}{2}} \cos \theta \sin ^{2} \theta+3\left(1-2 \sin ^{2} \theta\right)^{\frac{1}{2}} \cos \theta=0 \end{aligned}$	Second (dependent) M mark for differentiating using the product rule A1 awarded here for correct derivative and M1 for setting their derivative equal to 0
$\begin{aligned} & -6 \sin ^{2} \theta+3\left(1-2 \cos ^{2} \theta\right)=0 \\ & 4 \sin ^{2} \theta=1 \text { or } 4 \cos ^{2} \theta=3 \end{aligned}$	Multiplication by $\left(\cos ^{2} \theta-\sin ^{2} \theta\right)^{\frac{1}{2}}$, division by $3 \cos \theta$ and use of $\sin ^{2} \theta=1-\cos ^{2} \theta$ or vice versa simplify the equation but do not provide specific M marks
$\begin{aligned} & \sin \theta= \pm \frac{1}{2} \text { or } \cos \theta= \pm \frac{\sqrt{3}}{2} \\ & \left(\theta=\frac{\pi}{6}\right) \end{aligned}$	Value of $\sin \theta$ or $\cos \theta$ reached with use of $\cos 2 \theta=\ldots$ and no method errors seen (arithmetic slips would be condoned) gives final M mark. Second A mark given here.

Option 2 - using $r^{2} \sin ^{2} \theta$ with/without manipulation of $\cos 2 \theta$ before differentiation

Use of $9 \cos 2 \theta \sin ^{2} \theta$	First M mark even if they have a slip on the 9 and use 3 but must be $\sin ^{2} \theta$
$-9(2) \sin 2 \theta \sin ^{2} \theta+9(2) \cos 2 \theta \sin \theta \cos \theta=0$	Second (dependent) M mark for differentiating using the product rule A1 awarded here for correct derivative and M1 for setting their derivative equal to 0
$-2 \sin ^{2} \theta+\cos 2 \theta=0$ or $-\sin 2 \theta \sin \theta+\cos 2 \theta \cos \theta=0$ leading to $-2 \sin ^{2} \theta+\cos 2 \theta=0$ or $\cos 3 \theta=1$ (compound angle formula)	Division by $9 \sin 2 \theta$ or $18 \sin \theta$ and use of $\sin 2 \theta=2 \sin \theta \cos \theta$ followed by division by $\cos \theta$ will simplify the equation but not provide specific M marks
$\begin{aligned} & -2 \sin ^{2} \theta+1-2 \sin ^{2} \theta=0 \\ & 4 \sin ^{2} \theta=1 \end{aligned}$	Use of $\cos 2 \theta=1-2 \sin ^{2} \theta$ gives next M mark provided a value of $\sin \theta$ or alt is reached with no errors seen
$\sin \theta= \pm \frac{1}{2}$ or $3 \theta=2 \pi($ from $\cos 3 \theta=1)$ $\left(\theta=\frac{\pi}{6}\right)$	Value of $\sin \theta$ or alt reached with use of $\cos 2 \theta=\ldots$ and no method errors seen (arithmetic slips would be condoned) gives final M mark Second accuracy mark given here.

Use of $9\left(\cos ^{2} \theta-\sin ^{2} \theta\right) \sin ^{2} \theta$ Could be expanded out to $9 \cos ^{2} \theta \sin ^{2} \theta-9 \sin ^{4} \theta$ before differentiation in which case the derivative is immediately given by $-18 \cos \theta \sin ^{3} \theta+18 \cos ^{3} \theta \sin \theta-36 \sin ^{3} \theta \cos \theta$	First M mark even if they have a slip on the 9 and use 3 but must be $\sin ^{2} \theta$ Use of $\cos 2 \theta=2 \cos ^{2} \theta-1$ gives 4th M mark provided a value of $\sin \theta$ or alt is reached with no errors seen after the differentiation
$\begin{aligned} & 9(-2 \cos \theta \sin \theta-2 \sin \theta \cos \theta) \sin ^{2} \theta+9\left(\cos ^{2} \theta-\sin ^{2} \theta\right) 2 \sin \theta \\ & -36 \sin ^{3} \theta \cos \theta+18\left(\cos ^{2} \theta-\sin ^{2} \theta\right) \sin \theta \cos \theta=0 \\ & -36 \cos \theta \sin ^{3} \theta+18 \cos ^{3} \theta \sin \theta-18 \sin ^{3} \theta \cos \theta=0 \end{aligned}$	Second (dependent) M mark for differentiating using the product rule A1 awarded here for correct derivative and M1 for setting their derivative equal to 0
$\begin{aligned} & 18 \cos ^{3} \theta \sin \theta-54 \sin ^{3} \theta \cos \theta=0 \\ & \cos ^{2} \theta-3 \sin ^{2} \theta=0 \\ & 1-4 \sin ^{2} \theta=0 \text { or } 4 \cos ^{2} \theta-3=0 \end{aligned}$	Division by $18 \cos \theta \sin \theta$ and use of $\sin ^{2} \theta=1-\cos ^{2} \theta$ or vice versa will simplify the equation but not provide specific M marks
$\begin{aligned} & \sin \theta= \pm \frac{1}{2} \text { or } \cos \theta= \pm \frac{\sqrt{3}}{2} \\ & \left(\theta=\frac{\pi}{6}\right) \end{aligned}$	Value of $\sin \theta$ or $\cos \theta$ reached with use of $\cos 2 \theta=\ldots$ and no method errors seen (arithmetic slips would be condoned) gives final M mark Second accuracy mark given here.

Use of $9\left(2 \cos ^{2} \theta-1\right) \sin ^{2} \theta$ Could be expanded out to $18 \cos ^{2} \theta \sin ^{2} \theta-9 \sin ^{2} \theta$ before differentiation in which case the derivative is immediately given by $-36 \cos \theta \sin ^{3} \theta+36 \cos ^{3} \theta \sin \theta-18 \sin \theta \cos \theta$	First M mark even if they have a slip on the 9 and use 3 but must be $\sin ^{2} \theta$ Use of $\cos 2 \theta=2 \cos ^{2} \theta-1$ gives 4th M mark provided a value of $\sin \theta$ or alt is reached with no errors seen after the differentiation
$\begin{aligned} & 9(-4 \cos \theta \sin \theta) \sin ^{2} \theta+9\left(2 \cos ^{2} \theta-1\right) 2 \sin \theta \cos \theta=0 \\ & -36 \sin ^{3} \theta \cos \theta+36 \cos ^{3} \theta \sin \theta-18 \sin \theta \cos \theta=0 \end{aligned}$	Second (dependent) M mark for differentiating using the product rule A1 awarded here for correct derivative and M1 for setting their derivative equal to 0
$-2 \sin ^{2} \theta+2 \cos ^{2} \theta-1=0$ $2 \cos 2 \theta=1$ or $1-4 \sin ^{2} \theta=0$ or $4 \cos ^{2} \theta-3=0$	Division by $18 \cos \theta \sin \theta$ and use of $\sin ^{2} \theta=1-\cos ^{2} \theta$ or vice versa will simplify the equation but not provide specific M marks It is also possible to use $\cos ^{2} \theta-\sin ^{2} \theta=\cos 2 \theta$ here
$\begin{aligned} & \sin \theta= \pm \frac{1}{2} \text { or } \cos \theta= \pm \frac{\sqrt{3}}{2} \text { or } \cos 2 \theta=\frac{1}{2} \\ & \left(\theta=\frac{\pi}{6}\right) \end{aligned}$	Value of $\sin \theta$ or alt reached with use of $\cos 2 \theta=\ldots$ and no method errors seen (arithmetic slips would be condoned) gives final M mark Second accuracy mark given here.

Use of $9\left(1-2 \sin ^{2} \theta\right) \sin ^{2} \theta$	First M mark even if they have a slip on the 9 and use 3 but must case the derivative is immediately given by be $\sin ^{2} \theta$
$18 \sin \theta \cos \theta-72 \cos \theta \sin ^{3} \theta$	Use of $\cos 2 \theta=2 \cos ^{2} \theta-1$ gives 4 th M mark provided a value of sin θ or alt is reached with no errors seen after the differentiation
$9(-4 \cos \theta \sin \theta) \sin ^{2} \theta+9\left(1-2 \sin ^{2} \theta\right) 2 \sin \theta \cos \theta=0$	Second (dependent) M mark for differentiating using the product rule
$-36 \sin ^{3} \theta \cos \theta-36 \sin ^{3} \theta \cos \theta+18 \sin \theta \cos \theta=0$	A1 awarded here for correct in which derivative and M1 for setting their derivative equal to 0
$1-4 \sin ^{2} \theta=0$	Division by $18 \cos \theta$ sin θ will simplify the equation but not provide specific M marks
$\sin \theta= \pm \frac{1}{2}$ or $\cos \theta= \pm \frac{\sqrt{3}}{2}$ or $\cos 2 \theta=\frac{1}{2}$	Value of sin θ or alt reached with use of cos $2 \theta=\ldots$ and no method errors seen (arithmetic slips would be condoned) gives final M mark
$\left(\theta=\frac{\pi}{6}\right)$	Second accuracy mark given here.

Using the factor formulae after differentiating $3(\cos 2 \theta)^{\frac{1}{2}} \sin \theta$:
M1 awarded for using $3(\cos 2 \theta)^{\frac{1}{2}} \sin \theta$
$3\left(\frac{1}{2}\right)(\cos 2 \theta)^{-\frac{1}{2}}(-2 \sin 2 \theta) \sin \theta+3(\cos 2 \theta)^{\frac{1}{2}} \cos \theta=0$
M1A1 awarded for correct differentiation using product and chain rule
M1 for setting derivative equal to zero
Multiplication by $(\cos 2 \theta)^{\frac{1}{2}}$ and division by 3 gives
$\cos 2 \theta \cos \theta-\sin 2 \theta \sin \theta=0$
$\cos 3 \theta=0$
dM1 mark can now be awarded for using correct trigonometric formulae to reduce the equation to $\cos k \theta=\ldots$ but the A mark requires $\cos \theta=\ldots$ or $\theta=\frac{\pi}{6}$
$3 \theta=\frac{\pi}{2}$
$\theta=\frac{\pi}{6}$

The A1 mark can now be awarded

Telephone 01623467467
Fax 01623450481
Email publication.orders@edexcel.com
Order Code UA035974 Summer 2013

For more information on Edexcel qualifications, please visit our website
Llywodraeth Cynulliad Cymru
Welsh Assembly Government www.edexcel.com

Rewarding Learning

edexcel "

Mark Scheme (Results)

Summer 2013

GCE Further Pure Mathematics 2 (6668/01)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at www.edexcel.com.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.
www.edexcel.com/contactus

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2013
Publications Code UA035971
All the material in this publication is copyright
© Pearson Education Ltd 2013

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

EDEXCEL GCE MATHEMATI CS

General Instructions for Marking

1. The total number of marks for the paper is 75 .
2. The Edexcel Mathematics mark schemes use the following types of marks:

- M marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- B marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.

3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes:

- bod - benefit of doubt
- ft - follow through
- the symbol $\sqrt{ }$ will be used for correct ft
- cao - correct answer only
- cso - correct solution only. There must be no errors in this part of the question to obtain this mark
- isw - ignore subsequent working
- awrt - answers which round to
- SC: special case
- oe - or equivalent (and appropriate)
- dep - dependent
- indep - independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper
- - The second mark is dependent on gaining the first mark

4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
6. If a candidate makes more than one attempt at any question:

- If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
- If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.

7. Ignore wrong working or incorrect statements following a correct answer.
8. In some instances, the mark distributions (e.g. M1, B1 and A1) printed on the candidate's response may differ from the final mark scheme

General Principles for Pure Mathematics Marking

(But note that specific mark schemes may sometimes override these general principles).

Method mark for solving 3 term quadratic:

1. Factorisation

$$
\begin{aligned}
& \left(x^{2}+b x+c\right)=(x+p)(x+q), \text { where }|p q|=|c|, \text { leading to } \mathrm{x}= \\
& \left(a x^{2}+b x+c\right)=(m x+p)(n x+q), \text { where }|p q|=|c| \text { and }|m n|=|a|, \text { leading to } \mathrm{x}=
\end{aligned}
$$

2. Formula

Attempt to use correct formula (with values for a, b and c).
3. Completing the square

Solving $x^{2}+b x+c=0: \quad\left(x \pm \frac{b}{2}\right)^{2} \pm q \pm c, \quad q \neq 0, \quad$ leading to $\mathrm{x}=\ldots$

Method marks for differentiation and integration:

1. Differentiation

Power of at least one term decreased by 1. ($x^{n} \rightarrow x^{n-1}$)
2. Integration

Power of at least one term increased by $1 .\left(x^{n} \rightarrow x^{n+1}\right)$

Use of a formula

Where a method involves using a formula that has been learnt, the advice given in recent examiners' reports is that the formula should be quoted first.
Normal marking procedure is as follows:
Method mark for quoting a correct formula and attempting to use it, even if there are mistakes in the substitution of values.
Where the formula is not quoted, the method mark can be gained by implication from correct working with values, but may be lost if there is any mistake in the working.

Exact answers

Examiners' reports have emphasised that where, for example, an exact answer is asked for, or working with surds is clearly required, marks will normally be lost if the candidate resorts to using rounded decimals.

Answers without working

The rubric says that these may not gain full credit. Individual mark schemes will give details of what happens in particular cases. General policy is that if it could be done "in your head", detailed working would not be required.

Question Number	Scheme	Marks
1. (a) (b)	$\begin{aligned} & \frac{2}{(2 r+1)(2 r+3)}=\frac{A}{2 r+1}+\frac{B}{2 r+3}=, \frac{1}{2 r+1}-\frac{1}{2 r+3} \\ & \frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\ldots \cdot \frac{1}{2 n+1}-\frac{1}{2 n+3} \\ & =\frac{1}{3}-\frac{1}{2 n+3}=\frac{2 n+3-3}{3(2 n+3)} \\ & \sum_{1}^{n} \frac{3}{(2 r+1)(2 r+3)}=\frac{3}{2} \times \frac{2 n}{3(2 n+3)}=\frac{n}{2 n+3} \end{aligned}$	M1,A1 (2) M1 M1depA1 (3)
Notes for Question 1		
(a) M1 for any valid attempt to obtain the PFs		
A1 for	$\frac{1}{r+1}-\frac{1}{2 r+3}$	

NB With no working shown award M1A1 if the correct PFs are written down, but M0A0 if either one is incorrect
(b)

M1 for using their PFs to split each of the terms of the sum or of $\sum \frac{2}{(2 r+1)(2 r+3)}$ into 2 PFs.
At least 2 terms at the start and 1 at the end needed to show the diagonal cancellation resulting in two remaining terms.

M1dep for simplifying to a single fraction and multiplying it by the appropriate constant
A1cao for $\sum=\frac{n}{2 n+3}$

NB: If r is used instead of n (including for the answer), only M marks are available.

Question Number	Scheme	Marks
$\begin{gathered} 2 \\ \text { (a) } \end{gathered}$	$z=5 \sqrt{ } 3-5 i=r(\cos \theta+\mathrm{i} \sin \theta)$	
	$r=\sqrt{ }\left(5^{2} \times 3+5^{2}\right)=10$	B1 (1)
(b)	$\arg z=\arctan \left(-\frac{5}{5 \sqrt{ } 3}\right)=-\frac{\pi}{6} \quad\left(\text { or }-\frac{\pi}{6} \pm 2 n \pi\right)$	M1A1 (2)
(c)	$\left\|\frac{w}{z}\right\|=\frac{2}{10}=\frac{1}{5}$ or 0.2	B1 (1)
(d)	$\arg \left(\frac{w}{z}\right)=\frac{\pi}{4}-\left(-\frac{\pi}{6}\right),=\frac{5 \pi}{12} \quad\left(\text { or } \frac{5 \pi}{12} \pm 2 n \pi\right)$	M1,A1 (2)
		[6]

Notes for Question 2

(a)

B1 for $|z|=10$ no working needed
(b)

M1 for $\arg z=\arctan \left(\pm \frac{5}{5 \sqrt{ } 3}\right), \tan (\arg z)= \pm \frac{5}{5 \sqrt{3}}, \arg z=\arctan \left(\pm \frac{5 \sqrt{ } 3}{5}\right)$ or
$\tan (\arg z)= \pm \frac{5 \sqrt{3}}{5} \quad$ OR use their $|z|$ with sin or cos used correctly
A1 for $=-\frac{\pi}{6} \quad\left(\right.$ or $\left.-\frac{\pi}{6} \pm 2 n \pi\right) \quad$ (must be 4th quadrant)
(c)

B1 for $\left|\frac{w}{z}\right|=\frac{2}{10}$ or $\frac{1}{5}$ or 0.2
(d)

M1 for $\arg \left(\frac{w}{z}\right)=\frac{\pi}{4}-\arg z$ using their $\arg z$
A1 for $\frac{5 \pi}{12} \quad\left(\right.$ or $\left.\frac{5 \pi}{12} \pm 2 n \pi\right)$
Alternative for (d):
Find $\frac{w}{z}=\frac{(\sqrt{6}-\sqrt{2})+(\sqrt{6}+\sqrt{2}) i}{20}$
$\tan \left(\arg \frac{w}{z}\right)=\frac{\sqrt{6}+\sqrt{2}}{\sqrt{6}-\sqrt{2}} \quad$ M1 from their $\frac{w}{z}$
$\arg \left(\frac{w}{z}\right)=\frac{5 \pi}{12}$
A1 cao

Work for (c) and (d) may be seen together - give B and A marks only if modulus and argument are clearly identified
ie $\frac{1}{5}\left(\cos \frac{5 \pi}{12}+\mathrm{i} \sin \frac{5 \pi}{12}\right)$ alone scores B0M1A0

Question Number	Scheme	Marks
3	$(x=0) \quad \frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=\sin 0-4 \times \frac{1}{2}=-2$	B1
	$\frac{\mathrm{d}^{3} y}{\mathrm{~d} x^{3}}+4 \frac{\mathrm{~d} y}{\mathrm{~d} x}-\cos x(=0)$	M1
	$(x=0) \quad \frac{\mathrm{d}^{3} y}{\mathrm{~d} x^{3}}=\cos 0-4 \times \frac{1}{8}=\frac{1}{2}$	A1
	$(y=) y_{0}+x\left(\frac{\mathrm{~d} y}{\mathrm{~d} x}\right)_{0}+\frac{x^{2}}{2!}\left(\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}\right)_{0}+\frac{x^{3}}{3!}\left(\frac{\mathrm{d}^{3} y}{\mathrm{~d} x^{3}}\right)_{0}+\ldots$	M1 (2! or 2 and 3 ! or 6)
	$(y=) \frac{1}{2}+x \times \frac{1}{8}+\frac{x^{2}}{2} \times(-2)+\frac{x^{3}}{6} \times \frac{1}{2}$	
	$y=\frac{1}{2}+\frac{x}{8}-x^{2}+\frac{x^{3}}{12}$	A1 cao [5]
	Alt: $y=\frac{1}{2}+\frac{x}{8}+a x^{2}+b x^{3}+\ldots$	B1
	$y^{\prime \prime}=2 a+6 b x+\ldots$	M1 Diff twice
	$2 a+6 b x+\ldots=\sin x-\left(\frac{1}{2}+\frac{x}{8}+a x^{2}+b x^{3} \ldots\right)$	A1 Correct differentiation and equation used
	$2 a+2=0 \quad a=-1$	M1
	$6 b+\frac{1}{2}=1 \quad b=\frac{1}{12}$	
	$y=\frac{1}{2}+\frac{x}{8}-x^{2}+\frac{x^{3}}{12}$	A1cao

Notes for Question 3

B1 for $\left(\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}\right)_{0}=-2$ wherever seen
M1 for attempting the differentiation of the given equation. To obtain $\frac{\mathrm{d}^{3} y}{\mathrm{~d} x^{3}} \pm k \frac{\mathrm{~d} y}{\mathrm{~d} x} \pm \cos x(=0)$ oe
A1 for substituting $x=0$ to obtain $\left(\frac{\mathrm{d}^{3} y}{\mathrm{~d} x^{3}}\right)_{0}=\frac{1}{2}$
M1 for using the expansion $[y=\mathrm{f}(x)]=\mathrm{f}(0)+x \mathrm{f}^{\prime}(0)+\frac{x^{2}}{2(!)} \mathrm{f}^{\prime \prime}(0)+\frac{x^{3}}{3!} \mathrm{f}^{\prime \prime \prime}(0)$ with their values for $\frac{\mathrm{d}^{3} y}{\mathrm{~d} x^{3}}$ and $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}$. Factorial can be omitted in the x^{2} term but must be shown explicitly in the x^{3} term or implied by further working eg using 6 .

A1cao for $y=\frac{1}{2}+\frac{x}{8}-x^{2}+\frac{x^{3}}{12} \quad$ (Ignore any higher powers included) Exact decimals allowed. Must include $\boldsymbol{y}=\ldots$

Alternative:
B1 for $y=\frac{1}{2}+\frac{x}{8}+a x^{2}+b x^{3}+\ldots$
M1 for differentiating this twice to get $y^{\prime \prime}=2 a+6 b x+\ldots$ (may not be completely correct)
A1 for correct differentiation and using the given equation and the expansion of $\sin x$ to get $2 a+6 b x+\ldots .=\left(x-\frac{x^{3}}{3}+\ldots\right)-4\left(\frac{1}{2}+\frac{x}{8}+\ldots\right)$

M1 for equating coefficients to obtain a value for a or b
A1 cao for $y=\frac{1}{2}+\frac{x}{8}-x^{2}+\frac{x^{3}}{12}$ (Ignore any higher powers included)

Question Number	Scheme	Marks
(a)	Assume true for $n=k: \quad z^{k}=r^{k}(\cos k \theta+\mathrm{i} \sin k \theta)$	
	$n=k+1: \quad z^{k+1}=\left(z^{k} \times z=\right) r^{k}(\cos k \theta+\mathrm{i} \sin k \theta) \times r(\cos \theta+\mathrm{i} \sin \theta)$	M1
	$=r^{k+1}(\cos k \theta \cos \theta-\sin k \theta \sin \theta+\mathrm{i}(\sin k \theta \cos \theta+\cos k \theta \sin \theta))$	M1
	$=r^{k+1}(\cos (k+1) \theta+\mathrm{i} \sin (k+1) \theta)$	M1depA1cso
	\therefore - if true for $n=k_{2} \quad$ also true for $n=k+1$	
	$k=1 \quad z^{1}=r^{1}(\cos \theta+\mathrm{i} \sin \theta) ; ~ \underline{\text { True for } n=1} \quad \therefore \underline{\text { true for all } n}$	A1cso (5)
	Alternative: See notes for use of $r \mathrm{e}^{\mathrm{i} \theta}$ form	
(b)	$w=3\left(\cos \frac{3 \pi}{4}+\mathrm{i} \sin \frac{3 \pi}{4}\right)$	
	$w^{5}=3^{5}\left(\cos \frac{15 \pi}{4}+\mathrm{i} \sin \frac{15 \pi}{4}\right)$	M1
	$w^{5}=243\left(\frac{1}{\sqrt{ } 2}-\frac{1}{\sqrt{ } 2} \mathrm{i}\right) \quad\left[=\frac{243 \sqrt{ } 2}{2}-\frac{243 \sqrt{ } 2}{2} \mathrm{i} \quad \text { or }\right] \quad \text { oe }$	A1 (2)
		[7]

Notes for Question 4

(a)

NB: Allow each mark if $n, n+1$ used instead of $k, k+1$
M1 for using the result for $n=k$ to write $z^{k+1}\left(=z^{k} \times z\right)=r^{k}(\cos k \theta+\mathrm{i} \sin k \theta) \times r(\cos \theta+\mathrm{i} \sin \theta)$
M1 for multiplying out and collecting real and imaginary parts, using $\mathrm{i}^{2}=-1$
OR using sum of arguments and product of moduli to get $r^{k+1}(\cos (k \theta+\theta)+\mathrm{i} \sin (k \theta+\theta))$

M1dep for using the addition formulae to obtain single cos and sin terms
OR factorise the argument $r^{k+1}(\cos \theta(k+1)+\mathrm{i} \sin \theta(k+1))$
Dependent on the second M mark.
A1cso for $r^{k+1}(\cos (k+1) \theta+\mathrm{i} \sin (k+1) \theta) \quad$ Only give this mark if all previous steps are fully correct.

A1cso All 5 underlined statements must be seen

Alternative: Using Euler's form

$z=r(\cos \theta+i \sin \theta)=r \mathrm{e}^{\mathrm{i} \theta}$	M1 May not be seen explicitly
$z^{k+1}=z^{k} \times z=\left(r \mathrm{e}^{\mathrm{i} \theta}\right)^{k} \times r \mathrm{e}^{\mathrm{i} \theta}=r^{k} \mathrm{e}^{\mathrm{i} k \theta} \times r \mathrm{e}^{\mathrm{i} \theta}$	M 1
$=r^{k+1} \mathrm{e}^{\mathrm{i}(k+1) \theta}$	M1dep on $2^{\text {nd }} \mathrm{M}$ mark
$=r^{k+1}(\cos (k+1) \theta+\mathrm{i} \sin (k+1) \theta)$	A1cso
$k=1 \quad \mathrm{z}^{1}=r^{1}(\cos \theta+\mathrm{i} \sin \theta)$	
True for $n=1 \therefore$ true for all n etc	A1 cso All 5 underlined statements must be seen

(b)

M1 for attempting to apply de Moivre to w or attempting to expand w^{5} and collecting real and imaginary parts, but no need to simplify these.

A1cao for $243\left(\frac{1}{\sqrt{ } 2}-\frac{1}{\sqrt{ } 2} \mathrm{i}\right) \quad\left[=\frac{243 \sqrt{ } 2}{2}-\frac{243 \sqrt{ } 2}{2} \mathrm{i}\right] \quad$ (oe eg 3^{5} instead of 243)

Question Number	Scheme	Marks
(a)	$\frac{\mathrm{d} y}{\mathrm{~d} x}+2 \frac{y}{x}=4 x$	M1
	I F: $\quad \mathrm{e}^{\int \frac{2}{x} \mathrm{dx}}=\mathrm{e}^{2 \ln x}=\left(x^{2}\right)$	M1
	$x^{2} \frac{\mathrm{~d} y}{\mathrm{~d} x}+2 x y=4 x^{3}$	M1dep
	$y x^{2}=\int 4 x^{3} \mathrm{~d} x=x^{4}(+c)$	M1dep
	$y=x^{2}+\frac{c}{x^{2}}$	A1cso (5)
(b)	$x=1, y=5 \Rightarrow c=4$	M1
	$y=x^{2}+\frac{4}{x^{2}}$	A1ft (2)
(c)	$\frac{\mathrm{d} y}{\mathrm{~d} x}=2 x-\frac{8}{x^{3}}$	
	$\frac{\mathrm{d} y}{\mathrm{~d} x}=0 \quad x^{4}=4, \quad x= \pm \sqrt{2} \quad \text { or } \pm \sqrt[4]{4}$	M1,A1
	$y=2+\frac{4}{2}=4$	A1cao
	Alt: Complete square on $y=\ldots$ or use the original differential equation	M1
	$x= \pm \sqrt{2}, \quad y=4$	A1,A1
	y	B1 shape
		B1 turning points shown somewhere
		(5)
		[12]

Notes for Question 5

(a)

M1 for dividing the given equation by x May be implied by subsequent work.
M1 for $\operatorname{IF}=\mathrm{e}^{\int_{x}^{2} \mathrm{dx}}=\mathrm{e}^{2 \ln x}=\left(x^{2}\right) \quad \int \frac{2}{x} \mathrm{~d} x$ must be seen together with an attempt at integrating this. $\ln x$ must be seen in the integrated function.
M1dep for multiplying the equation $\frac{\mathrm{d} y}{\mathrm{~d} x}+2 \frac{y}{x}=4 x$ by their IF dep on 2nd M mark

M1dep for attempting the integration of the resulting equation - constant not needed. Dep on 2nd and 3rd M marks
A1cso for $y=x^{2}+\frac{c}{x^{2}}$ oe eg $y x^{2}=x^{4}+c$
Alternative: for first three marks: Multiply given equation by x to get straight to the third line. All 3 M marks should be given.
(b)

M1 for using $x=1, y=5$ in their expression for y to obtain a value for c

A1ft for $y=x^{2}+\frac{4}{x^{2}}$ follow through their result from (a)
(c)

M1 for differentiating their result from (b), equating to 0 and solving for x
A1 for $x= \pm \sqrt{2}$ (no follow through) or $\pm \sqrt[4]{4}$ No extra real values allowed but ignore any imaginary roots shown.

A1cao for using the particular solution to obtain $y=4$. No extra values allowed.

Alternatives for these 3 marks:
M1 for making $\frac{\mathrm{d} y}{\mathrm{~d} x}=0$ in the given differential equation to get $y=2 x^{2}$ and using this with their particular solution to obtain an equation in one variable
OR complete the square on their particular solution to get $y=\left(x+\frac{2}{x}\right)^{2}-4$
A1 for $x= \pm \sqrt{2}$ (no follow through)
A1cao for $y=4$ No extra values allowed

B1 for the correct shape - must have two minimum points and two branches, both asymptotic to the y-axis

B1 for a fully correct sketch with the coordinates of the minimum points shown somewhere on or beside the sketch. Decimals accepted here.

\begin{tabular}{|c|c|c|}
\hline Question Number \& Scheme \& Marks

\hline \multirow[t]{8}{*}{(a)} \& $$
2 x^{2}+6 x-5=5-2 x
$$
$$
2 x^{2}+8 x-10=0
$$
$$
x^{2}+4 x-5=0
$$ \& M1

\hline \& $(x+5)(x-1)=0$ or by formula \& M1

\hline \& $$
x=-5, x=1
$$ \& A1

\hline \& $$
-2 x^{2}-6 x+5=5-2 x
$$ \& M1

\hline \& $$
2 x^{2}+4 x=0
$$ \& A1

\hline \& $x=0 \quad x=-2$ \& A1 (6)

\hline \& $$
1
$$ \& B1 line

\hline \& \& B1 quad curve

\hline \multirow[t]{2}{*}{(b)

(c)} \& \& | B1ft (on x coords from |
| :--- |
| (a)) |
| (3) |

\hline \& $$
x<-5, \quad-2<x<0, \quad x>1
$$ \& B1,B1,B1 (3)

\hline (c) \& Special case: Deduct the last B mark earned1 if \leqslant or \geqslant used \& [12]

\hline
\end{tabular}

Notes for Question 6

(a)NB: Marks for (a) can only be awarded for work shown in (a):

M1 for $2 x^{2}+6 x-5=5-2 x$

M1 for obtaining a 3 term quadratic and attempting to solve by factorising, formula or completing the square

A1 for $x=-5, x=1$

M1 for considering the part of the quadratic that needs to be reflected ie for $-2 x^{2}-6 x+5=5-2 x$ oе
A1 for a correct 2 term quadratic, terms in any order $2 x^{2}+4 x=0$ oe
A1 for $x=0 \quad x=-2$

NB: The question demands that algebra is used, so solutions which do not show how the roots have been obtained will score very few if any marks, depending on what is written on the page.

Alternative: Squaring both sides:
M1 Square both sides and simplify to a quartic expression
M1 Take out the common factor x
A1 x, a correct linear factor and a correct quadratic factor
M1 x and 3 linear factors
A1 any two of the required values
A1 all 4 values correct
(b)

B1 for a line drawn, with negative gradient, crossing the positive y-axis
B1 for the quadratic curve, with part reflected and the correct shape. It should cross the y-axis at the same point as the line and be pointed where it meets the x-axis (ie not U -shaped like a turning point)

B1ft for showing the x coordinates of the points where the line crosses the curve. They can be shown on the x-axis as in the MS (accept O for 0) or written alongside the points as long as it is clear the numbers are the x coordinates
The line should cross the curve at all the crossing points found and no others for this mark to be given.
(c)NB: No follow through for these marks

B1 for any one of $x<-5, \quad-2<x<0, \quad x>1 \quad$ correct

B1 for a second one of these correct

B1 for the third one correct

Special case: if \leqslant or \geqslant is used, deduct the last B mark earned.

Question Number	Scheme	Marks
(a)	$\frac{\mathrm{d} y}{\mathrm{~d} x}=v+x \frac{\mathrm{~d} v}{\mathrm{~d} x}$	M1
	$\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=\frac{\mathrm{d} v}{\mathrm{~d} x}+\frac{\mathrm{d} v}{\mathrm{~d} x}+x \frac{\mathrm{~d}^{2} v}{\mathrm{~d} x^{2}}$	M1A1
	$4 x^{2}\left(2 \frac{\mathrm{~d} v}{\mathrm{~d} x}+x \frac{\mathrm{~d}^{2} v}{\mathrm{~d} x^{2}}\right)-8 x\left(v+x \frac{\mathrm{~d} v}{\mathrm{~d} x}\right)+\left(8+4 x^{2}\right) \times x v=x^{4}$	M1
	$4 x^{3} \frac{\mathrm{~d}^{2} v}{\mathrm{dx} x^{2}}+4 x^{3} v=x^{4}$	M1
	$4 \frac{\mathrm{~d}^{2} v}{\mathrm{~d} x^{2}}+4 v=x$	A1 (6)
	See end for an alternative for (a)	
(b)	$4 \lambda^{2}+4=0$	
	$\lambda^{2}=-1$ oe	M1A1
	$(v=) C \cos x+D \sin x \quad\left(\right.$ or $\left.\quad(v=) A \mathrm{e}^{\mathrm{ix}}+B \mathrm{e}^{-\mathrm{ix}}\right)$	A1
	P.I: $\operatorname{Try} \quad v=k x(+l)$	
	$\frac{\mathrm{d} v}{\mathrm{~d} x}=k \frac{\mathrm{~d}^{2} v}{\mathrm{~d} x^{2}}=0$	M1
	$4 \times 0+4(k x(+l))=x$	M1dep
	$k=\frac{1}{4} \quad(l=0)$	
	$v=C \cos x+D \sin x+\frac{1}{4} x \quad\left(\text { or } v=A \mathrm{e}^{\mathrm{ix}}+B \mathrm{e}^{-\mathrm{ix}}+\frac{1}{4} x\right)$	A1 (6)
(c)	$y=x\left(C \cos x+D \sin x+\frac{1}{4} x\right) \quad\left(\right.$ or $\left.\quad y=x\left(A \mathrm{e}^{\mathrm{ix}}+B \mathrm{e}^{-\mathrm{ix}}+\frac{1}{4} x\right)\right)$	B1ft (1)

Question 7 continued

$$
\begin{array}{l|l}
\begin{array}{ll}
\text { Alternative for (a): } \\
v=\frac{y}{x} & \\
\frac{\mathrm{~d} v}{\mathrm{~d} x}=\frac{\mathrm{d} y}{\mathrm{~d} x} \times \frac{1}{x}-y \times \frac{1}{x^{2}} & \text { M1 } \\
\frac{\mathrm{d}^{2} v}{\mathrm{~d} x^{2}}=\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}} \times \frac{1}{x}-\frac{\mathrm{d} y}{\mathrm{~d} x} \times \frac{1}{x^{2}}-\frac{\mathrm{d} y}{\mathrm{~d} x} \times \frac{1}{x^{2}}+2 y \times \frac{1}{x^{3}} & \text { M1A1 } \\
x^{3} \frac{\mathrm{~d}^{2} v}{\mathrm{~d} x^{2}}=x^{2} \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}-2 x \frac{\mathrm{~d} y}{\mathrm{~d} x}+2 y & \text { M1 } \\
4 x^{3} \frac{\mathrm{~d}^{2} v}{\mathrm{~d} x^{2}}+4 x^{3} v=4 x^{2} \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}-8 x \frac{\mathrm{~d} y}{\mathrm{~d} x}+8 y+4 x^{2} y=x^{4} & \text { M1 } \\
4 \frac{\mathrm{~d}^{2} v}{\mathrm{~d} x^{2}}+4 v=x & *
\end{array} & \text { A1 }
\end{array}
$$

Notes for Question 7

(a)

M1 for attempting to differentiate $y=x v$ to get $\frac{\mathrm{d} y}{\mathrm{~d} x}$ - product rule must be used
M1 for differentiating their $\frac{\mathrm{d} y}{\mathrm{~d} x}$ to obtain an expression for $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}$ - product rule must be used
A1 for $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=\frac{\mathrm{d} v}{\mathrm{~d} x}+\frac{\mathrm{d} v}{\mathrm{~d} x}+x \frac{\mathrm{~d}^{2} v}{\mathrm{~d} x^{2}}$
M1 for substituting their $\frac{\mathrm{d} y}{\mathrm{~d} x}$ and $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}$ and $y=x v$ in the original equation to obtain a differential equation in v and x

M1 for collecting the terms to have at most a 4 term equation - 4 terms only if a previous error causes $\frac{\mathrm{d} v}{\mathrm{~d} x}$ to be included, otherwise 3 terms
A1cao and cso for $4 \frac{\mathrm{~d}^{2} v}{\mathrm{~d} x^{2}}+4 v=x \quad *$
Alternative: (see end of mark scheme)
M1 for writing $v=\frac{y}{x}$ and attempting to differentiate by quotient or product rule to get $\frac{\mathrm{d} v}{\mathrm{~d} x}$
M1 for differentiating their $\frac{\mathrm{d} v}{\mathrm{~d} x}$ to obtain an expression for $\frac{\mathrm{d}^{2} v}{\mathrm{~d} x^{2}}$ - product or quotient rule must be used

A1 for $\frac{\mathrm{d}^{2} v}{\mathrm{~d} x^{2}}=\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}} \times \frac{1}{x}-\frac{\mathrm{d} y}{\mathrm{~d} x} \times \frac{1}{x^{2}}-\frac{\mathrm{d} y}{\mathrm{~d} x} \times \frac{1}{x^{2}}+2 y \times \frac{1}{x^{3}}$
M1 for multiplying their $\frac{\mathrm{d}^{2} v}{\mathrm{~d} x^{2}}$ by x^{3}
M1 for multiplying by 4 and adding $4 x^{2} y$ to each side and equating to x^{4} (as rhs is now identical to the original equation.

A1cao and cso for $4 \frac{\mathrm{~d}^{2} v}{\mathrm{dx} x^{2}}+4 v=x \quad *$
(b)

M1 for forming the auxiliary equation and attempting to solve
A1 for $\lambda^{2}=-1$ oe
A1 for the complementary function in either form. Award for a correct CF even if $\lambda=\mathrm{i}$ only is shown.

Notes for Question 7 continued

M1 for trying one of $v=k x, k \neq 1$ or $v=k x+l$ and $v=m x^{2}+k x+l$ as a PI and obtaining $\frac{\mathrm{d} v}{\mathrm{~d} x}$ and $\frac{\mathrm{d}^{2} v}{\mathrm{~d} x^{2}}$

M1dep for substituting their differentials in the equation $4 \frac{\mathrm{~d}^{2} v}{\mathrm{~d} x^{2}}+4 v=x$. Award M0 if the original equation is used. Dep on 2nd M mark of (b)

A1cao for obtaining the correct result (either form)
(c)

B1ft for reversing the substitution to get $y=x\left(C \cos x+D \sin x+\frac{1}{4} x\right)$

$$
\left(\text { or } y=x\left(A \mathrm{e}^{\mathrm{ix}}+B \mathrm{e}^{-\mathrm{ix}}+\frac{1}{4} x\right)\right) \text { follow through their answer to (b) }
$$

Question Number	Scheme	Marks
8 (a)	$(y=) r \sin \theta=a \sin 2 \theta \sin \theta$	M1
	$\left(\frac{\mathrm{d} y}{\mathrm{~d} \theta}=\right) a(2 \cos 2 \theta \sin \theta+\sin 2 \theta \cos \theta)$	M1depA1
	$\left(\frac{\mathrm{d} y}{\mathrm{~d} \theta}=\right) 2 a \sin \theta\left(\cos 2 \theta+\cos ^{2} \theta\right)$	M1
	At $P \frac{\mathrm{~d} y}{\mathrm{~d} \theta}=0 \Rightarrow \sin \theta=0(\mathrm{n} / \mathrm{a})$ or $2 \cos ^{2} \theta-1+\cos ^{2} \theta=0$ $3 \cos ^{2} \theta=1$	M1 $\sin \theta=0$ not needed
	$\cos \theta=\frac{1}{\sqrt{ } 3}$	A1cso
(b)	$r=a \sin 2 \theta=2 a \sin \theta \cos \theta$	
	$r=2 a \sqrt{\left(1-\frac{1}{3}\right)} \sqrt{\frac{1}{3}}=2 a \frac{\sqrt{2}}{3}$	M1A1 (2)
(c)	Area $=\int_{0}^{\phi} \frac{1}{2} r^{2} \mathrm{~d} \theta=\frac{1}{2} a^{2} \int_{0}^{\phi} \sin ^{2} 2 \theta \mathrm{~d} \theta$	M1
	$=\frac{1}{2} a^{2} \int_{0}^{\phi} \frac{1}{2}(1-\cos 4 \theta) \mathrm{d} \theta$	M1
	$=\frac{1}{4} a^{2}\left[\theta-\frac{1}{4} \sin 4 \theta\right]_{0}^{\phi}$	M1A1
	$=\frac{1}{4} a^{2}\left[\phi-\frac{1}{4}\left(4 \sin \phi \cos \phi\left(2 \cos ^{2} \phi-1\right)\right)\right]$	M1dep on $2^{\text {nd }}$ M mark
	$=\frac{1}{4} a^{2}\left[\arccos \left(\frac{1}{\sqrt{3}}\right)-\left(\sqrt{\frac{2}{3}} \times \sqrt{\frac{1}{3}} \times\left(\frac{2}{3}-1\right)\right)\right]$	M1 dep (all Ms)
	$\frac{1}{36} a^{2}\left[9 \arccos \left(\frac{1}{\sqrt{3}}\right)+\sqrt{2}\right]$	A1 (7) [15]

Notes for Question 8

(a)

M1 for obtaining the y coordinate $y=r \sin \theta=a \sin 2 \theta \sin \theta$
M1dep for attempting the differentiation to obtain $\frac{\mathrm{d} y}{\mathrm{~d} \theta}$ Product rule and/or chain rule must be used; sin to become $\pm \cos$ (cos to become $\pm \sin$). The 2 may be omitted. Dependent on the first M mark.
A1 for correct differentiation eg $\frac{\mathrm{d} y}{\mathrm{~d} \theta}=a(2 \cos 2 \theta \sin \theta+\sin 2 \theta \cos \theta) \quad$ ое
M1 for using $\sin 2 \theta=2 \sin \theta \cos \theta$ anywhere in their solution to (a)
M1 for setting $\frac{\mathrm{d} y}{\mathrm{~d} \theta}=0$ and getting a quadratic factor with no $\sin ^{2} \theta$ included.
Alternative: Obtain a quadratic in $\sin \theta$ or $\tan \theta$ and $\operatorname{complete}$ to $\cos \theta=$ later.
A1cso for $\cos \theta=\frac{1}{\sqrt{ } 3}$ or $\cos \phi=\frac{1}{\sqrt{ } 3} *$
Question 8 (a) Variations you may see:
$\mathrm{y}=\mathrm{r} \sin \theta=\mathrm{a} \sin 2 \theta \sin \theta$

$\mathrm{y}=\operatorname{asin} 2 \theta \sin \theta$	$y=2 \sin ^{2} \theta \cos \theta$	$\mathrm{y}=2 \mathrm{a}\left(\cos \theta-\cos ^{3} \theta\right)$
$\begin{aligned} \mathrm{dy} / \mathrm{d} \theta & =\mathrm{a}(2 \cos 2 \theta \sin \theta+\sin 2 \theta \cos \theta) \\ & =\mathrm{a}\left(2 \cos 2 \theta \sin \theta+2 \sin \theta \cos ^{2} \theta\right) \\ & =2 \mathrm{asin} \theta\left(\cos 2 \theta+\cos ^{2} \theta\right) \\ & =2 \operatorname{asin} \theta\left(3 \cos ^{2} \theta-1\right) \\ \text { or } & =2 \operatorname{asin} \theta\left(2 \cos ^{2} \theta-\sin ^{2} \theta\right) \\ \text { or } & =2 \operatorname{asin} \theta\left(2-3 \sin ^{2} \theta\right) \end{aligned}$	$\begin{aligned} & d y / d \theta=2 \mathrm{a}\left(2 \sin \theta \cos ^{2} \theta-\right. \\ & \left.\sin ^{3} \theta\right) \\ & \\ & \left.\sin ^{2} \theta\right) \end{aligned}=2 \mathrm{a} \sin \theta\left(2 \cos ^{2} \theta-\right.$	$\begin{aligned} \mathrm{dy} / \mathrm{d} \theta= & 2 \mathrm{a}\left(-\sin \theta+3 \sin \theta \cos ^{2} \theta\right) \\ & =2 \operatorname{asin} \theta\left(3 \cos ^{2} \theta-1\right) \end{aligned}$

At P: dy/d $\theta=0=>\sin \theta=0$ or:

$2 \cos ^{2} \theta-\sin ^{2} \theta=0$	$3 \cos ^{2} \theta-1=0$	$2-3 \sin ^{2} \theta=0$
$\tan ^{2} \theta=2$	$\cos ^{2} \theta=1 / 3$	$\sin ^{2} \theta=2 / 3$
$\tan \theta= \pm \sqrt{2}=>\cos \theta= \pm \frac{1}{\sqrt{3}}$	$\cos \theta= \pm \frac{1}{\sqrt{3}}$	$\operatorname{Sin} \theta= \pm \frac{\sqrt{2}}{\sqrt{3}}= \pm \frac{\sqrt{6}}{3}=>\cos \theta= \pm \frac{1}{\sqrt{3}}$

(b)

M1 for using $\sin 2 \theta=2 \sin \theta \cos \theta, \cos ^{2} \theta+\sin ^{2} \theta=1$ and $\cos \phi=\frac{1}{\sqrt{ } 3}$ in $r=a \sin 2 \theta$ to obtain a numerical multiple of a for R. Need not be simplified.
A1cao for $R=2 a \frac{\sqrt{2}}{3}$
Can be done on a calculator. Completely correct answer with no working scores $2 / 2$; incorrect answer with no working scores $0 / 2$

Notes for Question 8 continued

(c)

M1 for using the area formula $\int_{0}^{\phi} \frac{1}{2} r^{2} \mathrm{~d} \theta=\frac{1}{2} a^{2} \int_{0}^{\phi} \sin ^{2} 2 \theta \mathrm{~d} \theta$ Limits not needed
M1 for preparing $\int \sin ^{2} 2 \theta \mathrm{~d} \theta$ for integration by using $\cos 2 x=1-2 \sin ^{2} x$
M1 for attempting the integration: $\cos 4 \theta$ to become $\pm \sin 4 \theta$ - the $\frac{1}{4}$ may be missing but inclusion of 4 implies differentiation - and the constant to become $k \theta$. Limits not needed.
A1 for $=\frac{1}{4} a^{2}\left[\theta-\frac{1}{4} \sin 4 \theta\right] \quad$ Limits not needed
M1dep for changing their integrated function to an expression in $\sin \theta$ and $\cos \theta$ and substituting limits 0 and ϕ. Dependent on the second M mark of (c)

M1dep for a numerical multiple of a^{2} for the area. Dependent on all previous M marks of (c)
A1cso for $\frac{1}{36} a^{2}\left[9 \arccos \left(\frac{1}{\sqrt{3}}\right)+\sqrt{2}\right] \quad *$
This is a given answer, so check carefully that it can be obtained from the previous step in their working.

Also: The final 3 marks can only be awarded if the working is shown ie $\sin 4 \theta$ cannot be obtained by calculator.

Further copies of this publication are available from
Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623467467
Fax 01623450481
Email publication.orders@edexcel.com
Order Code UA035971 Summer 2013

For more information on Edexcel qualifications, please visit our website www.edexcel.com

Rewarding Learning

